Stroke Guidelines of the Bern Stroke Network

S. Jung, H. Mattle, T. Horvath, D. Seiffge, M. Heldner, T. Meinel, M. Bühlmann, U. Prange,
S. Salmen, A. Humm, S. Renaud, R. Bühler, J. Gralla, G. Schroth, P. Mordasini, M. El-Koussy,
A. Angelillo-Scherrer, W. Z’Graggen, C. Bassetti, A. Raabe, U. Fischer, M. Arnold, Stroke-Team Bern

Physicians on duty

- Neurology
- Neuroradiology
- Neurosurgery
- Radiology
- Anesthesia
- Intensive Care Unit
- Cardiology
- Internal Medicine
- Infectiology

Phone numbers

- Resuscitation (CPR)
- Laboratory results
- Bed scheduling
- Stroke Unit

Miscellaneous

Phone numbers

www.strokecenter.ch Version 2021
Acute therapy

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment plan</td>
<td>4-5</td>
</tr>
<tr>
<td>Indications and choice of therapy</td>
<td>6</td>
</tr>
<tr>
<td>Contraindications</td>
<td>7</td>
</tr>
<tr>
<td>IVT alteplase dosage</td>
<td>8</td>
</tr>
<tr>
<td>IVT in patients treated with DOAC</td>
<td>8</td>
</tr>
<tr>
<td>Monitoring during IVT</td>
<td>9</td>
</tr>
<tr>
<td>Antihypertensive medication</td>
<td>9</td>
</tr>
<tr>
<td>Stroke unit treatment</td>
<td>10</td>
</tr>
<tr>
<td>Mobilization</td>
<td>11</td>
</tr>
<tr>
<td>Daily Checklist Stroke Unit</td>
<td>11</td>
</tr>
<tr>
<td>Prevention of deep veine thrombosis</td>
<td>11</td>
</tr>
<tr>
<td>DD neurological deterioration</td>
<td>12</td>
</tr>
<tr>
<td>Alteplase associated hemorrhage</td>
<td>12</td>
</tr>
<tr>
<td>DD myocardial infarction DD stress cardiomyopathy</td>
<td>12</td>
</tr>
<tr>
<td>Malignant infarcts</td>
<td>13</td>
</tr>
<tr>
<td>Agitation/delirium</td>
<td>14</td>
</tr>
<tr>
<td>TIA and Minor Stroke</td>
<td>15</td>
</tr>
<tr>
<td>Diagnostic workup</td>
<td>16-17</td>
</tr>
<tr>
<td>(A)symptomatic artery stenosis</td>
<td>18</td>
</tr>
<tr>
<td>Dissections</td>
<td>19</td>
</tr>
<tr>
<td>PFO + RoPE Score</td>
<td>19</td>
</tr>
<tr>
<td>Cerebrale vasculitis</td>
<td>20-22</td>
</tr>
<tr>
<td>Reversible cerebral vasokonstriction syndrom</td>
<td>23</td>
</tr>
<tr>
<td>Cerebral venous and sinus thrombosis</td>
<td>24</td>
</tr>
<tr>
<td>Therapeutic heparinization</td>
<td>24</td>
</tr>
<tr>
<td>Antihypertensive medication</td>
<td>25</td>
</tr>
</tbody>
</table>

Etiology

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary prevention</td>
<td>26</td>
</tr>
<tr>
<td>Secondary prevention in special situations</td>
<td>27</td>
</tr>
<tr>
<td>Silent stroke</td>
<td>28</td>
</tr>
<tr>
<td>Direct oral anticoagulants (DOAC)</td>
<td>29</td>
</tr>
<tr>
<td>Risk factors and stratification</td>
<td>30</td>
</tr>
<tr>
<td>Arterial hypertension</td>
<td>31</td>
</tr>
<tr>
<td>Physical inactivity</td>
<td>32</td>
</tr>
<tr>
<td>Dyslipidema</td>
<td>32</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>33</td>
</tr>
<tr>
<td>Sleep associated breathing disorder</td>
<td>33</td>
</tr>
<tr>
<td>Diet</td>
<td>34</td>
</tr>
<tr>
<td>Body weight and smoking</td>
<td>35</td>
</tr>
</tbody>
</table>

Prevention

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non traumatic intracebral hemorrhage</td>
<td>36</td>
</tr>
<tr>
<td>Anticoagulation associated ICH</td>
<td>36</td>
</tr>
<tr>
<td>Diagnostic algorhythm</td>
<td>37</td>
</tr>
<tr>
<td>Reinitiation of anticoagulatory medication</td>
<td>37</td>
</tr>
<tr>
<td>Microbleeds</td>
<td>38</td>
</tr>
<tr>
<td>Cerebral amyloid angiopathy</td>
<td>38</td>
</tr>
</tbody>
</table>

Bleedings

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. Scheme of functional systems</td>
<td>39</td>
</tr>
<tr>
<td>Fig. Brain supplying arteries</td>
<td>40-41</td>
</tr>
<tr>
<td>Fig. Vascular territoriesästerritorien</td>
<td>41-42</td>
</tr>
<tr>
<td>Pictures for assessment of naming and spatial recognition</td>
<td>44-45</td>
</tr>
<tr>
<td>Reading samples</td>
<td>46</td>
</tr>
<tr>
<td>CHA2DS2-VASc Score, modified Rankin Scale</td>
<td>47</td>
</tr>
<tr>
<td>NIHSS</td>
<td>48-49</td>
</tr>
<tr>
<td>GCS</td>
<td>49</td>
</tr>
<tr>
<td>Table for vision assessment</td>
<td>50</td>
</tr>
</tbody>
</table>

Figures & Scores

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute therapy</td>
<td></td>
</tr>
<tr>
<td>Etiology</td>
<td></td>
</tr>
<tr>
<td>Prevention</td>
<td></td>
</tr>
<tr>
<td>Bleedings</td>
<td></td>
</tr>
<tr>
<td>Diagnostic workup</td>
<td></td>
</tr>
<tr>
<td>Secondary prevention</td>
<td></td>
</tr>
<tr>
<td>Secondary prevention in special situations</td>
<td></td>
</tr>
<tr>
<td>Silent stroke</td>
<td></td>
</tr>
<tr>
<td>Direct oral anticoagulants (DOAC)</td>
<td></td>
</tr>
<tr>
<td>Risk factors and stratification</td>
<td></td>
</tr>
<tr>
<td>Arterial hypertension</td>
<td></td>
</tr>
<tr>
<td>Physical inactivity</td>
<td></td>
</tr>
<tr>
<td>Dyslipidema</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td></td>
</tr>
<tr>
<td>Sleep associated breathing disorder</td>
<td></td>
</tr>
<tr>
<td>Diet</td>
<td></td>
</tr>
<tr>
<td>Body weight and smoking</td>
<td></td>
</tr>
<tr>
<td>Non traumatic intracebral hemorrhage</td>
<td></td>
</tr>
<tr>
<td>Anticoagulation associated ICH</td>
<td></td>
</tr>
<tr>
<td>Diagnostic algorhythm</td>
<td></td>
</tr>
<tr>
<td>Reinitiation of anticoagulatory medication</td>
<td></td>
</tr>
<tr>
<td>Microbleeds</td>
<td></td>
</tr>
<tr>
<td>Cerebral amyloid angiopathy</td>
<td></td>
</tr>
<tr>
<td>Acute therapy</td>
<td>4-5</td>
</tr>
<tr>
<td>Etiology</td>
<td>16-17</td>
</tr>
<tr>
<td>Prevention</td>
<td>26</td>
</tr>
<tr>
<td>Bleedings</td>
<td>36</td>
</tr>
</tbody>
</table>
Contact information

Prof. Dr. med. S. Jung, Leiter Neurologischer Notfall, Tel. +41 (0)31 632 78 32, email: simon.jung@insel.ch
Prof. Dr. med. M. Arnold, Leiter Stroke Center, Tel. +41 (0)31 632 78 32, email: marcel.arnold@insel.ch
Prof. Dr. med. U. Fischer, Leiter Akutneurologie, +41 (0)31 632 78 32, email: urs.fischer@insel.ch
Administration Stroke Center: Pia Kupferschmid, Tel. +41 (0)31 632 78 32, email: stroke@insel.ch

Apps by Stroke Center Bern

Stroke Guide StrokeClock Stroke Amb

Links to additional documents including pediatric stroke guidelines

www.strokecenter.ch

University of Bern, Department of Neurology
Prof. M. Arnold, Prof. H. Mattle, Prof. U. Fischer, Prof. S. Jung, PD S. Seiffge, PD M. Heldner, Prof. H. Sarikaya, Dr. T. Horvath, Dr. M. Oberholzer, Dr. M. Bühlmann, Dr. T. Meinel, Dr. M. Göldlin, Dr. A. Scutelnic, Stephanie Wittwer, Irène Kaeser, Marie-Therese Probst, Prof. W. Z’Graggen, Prof. R. Müri, Prof. C. Bassetti

University of Bern, Department of Diagnostic and Interventional Neuroradiology
Prof. J. Gralla, Prof. G. Schroth, PD P. Mordasini, Dr. E. Piechowiak, Dr. T. Dobrocky, Dr. J. Kaesmacher, Dr. S. Pilgram-Pastor, Prof. R. Wiest, M. Mordasini

University of Bern, Department of Neurosurgery
Prof. A. Raabe, Prof. P. Schucht, Dr. D. Bervini, Prof. W. Z’Graggen

University of Bern, Department of Anesthesia and Pain Therapy
Prof. F. Stüber, Dr. F. Neff

University of Bern, Department of Intensive Care
Prof. S. Jakob, PD M. Hänggi

University of Bern, Department of Emergency Medicine
Prof. A. Exadaktylos, Dr. B. Lehmann

University of Bern, Department of Cardiology
Prof. S. Windecker, Prof. H. Tanner, PD L. Roten, Prof. T. Pilgrim, Prof. M. Wilhelm, Prof. J.P. Pfammatter

University of Bern, Department of General Medicine
Prof. D. Aujeski, Dr. M. Perrig, Prof. N. Rodondi

University of Bern, Department of Hematology
Prof. A. Angelillo-Scherrer, Dr. M. Nagler

University of Bern, Department of Rheumatology
Dr. L. Seitz, Dr. F. Lötscher

Drawings from Anja Giger, may be freely distributed with appropriate source citation.
Eye chart: PD M. Abegg, S. Küng; Translation corrections: S. Kaplan
Case history

- Symptom onset or last-seen-well time
- Previous history/medication?
- Relevant pre-existing condition?
- Pacemaker/artificial heart valve?
- Phone number of GP/next of kin

Diagnostics

- ABC scheme
- Glucose
- Temperature
- GCS
- RACE or G-FAST score

Triage

See chapter on patient triage
Early information transmitted to Stroke Centre/Unit to decide triage, fastest transportation

Position

⇒ Supine position – max. 30° if possible
 (when indicated due to other reasons higher positions are possible, e.g. if patient has respiratory problems)

Therapy

⇒ Venous line
⇒ Aim blood oxygen saturation > 92%
⇒ BP aim l 120–220 mmHg syst, < 120 mmHg diast
 > 220 mmHg syst. or > 120 mmHg diast: lower carefully
 < 120 mmHg syst: 500 ml NaCl

WARNING Do not administer aspirin, heparin or similar medication

Patient triage

<table>
<thead>
<tr>
<th>Symptom onset < 4.5 h</th>
<th>RACE score < 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→ admit to nearest Stroke Unit</td>
</tr>
<tr>
<td></td>
<td>(if IVT can be initiated within 4.5 h)</td>
</tr>
<tr>
<td></td>
<td>eventually IVT and transport to stroke center in case of large vessel occlusion: ICA, Carotid T, M1, M2, BA, P1, A1</td>
</tr>
<tr>
<td>RACE Score ≥ 5</td>
<td>Distance to Stroke Center < 20 min longer than to Stroke Unit</td>
</tr>
<tr>
<td></td>
<td>→ admit directly to Stroke Center</td>
</tr>
<tr>
<td></td>
<td>Distance to Stroke Center > 20 min longer than to Stroke Unit</td>
</tr>
<tr>
<td></td>
<td>→ admit to Stroke Unit and eventually IVT and transport to Stroke Center in case of large vessel occlusion: ICA, Carotid T, M1, M2, BA, P1, A1</td>
</tr>
</tbody>
</table>

| Symptom onset 4.5–24 h | → admit to nearest Stroke Center |
| - Unclear symptom onset |
| - Wake-up stroke |
| - Patient under (D)OAC |
| - Contraindication for IVT |
| → admit to nearest Stroke Center |

| Symptom onset > 24 h | → admit to nearest Stroke Unit or Stroke Center |

Stroke Unit: availability of IVT, Stroke Center: availability of IVT + EVT
IVT: intravenous thrombolysis, EVT: endovascular treatment
Prehospital phase

RACE Score

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Show me your teeth”</td>
<td></td>
</tr>
<tr>
<td>No palsy (symmetrical movement)</td>
<td>0</td>
</tr>
<tr>
<td>Mild (slight asymmetric)</td>
<td>1</td>
</tr>
<tr>
<td>Moderate to severe (complete asymmetry)</td>
<td>2</td>
</tr>
<tr>
<td>“Extend your arms and hold them there” (supine 45°, otherwise 90°)</td>
<td></td>
</tr>
<tr>
<td>Normal to mild: arms held out > 10 sec</td>
<td>0</td>
</tr>
<tr>
<td>Moderate: one or both arms held out < 10 sec</td>
<td>1</td>
</tr>
<tr>
<td>Severe: unable to raise arm(s) against gravity</td>
<td>2</td>
</tr>
<tr>
<td>“Extend your legs and hold them there” (30° in supine position)</td>
<td></td>
</tr>
<tr>
<td>Normal to mild: legs raised for > 5 sec</td>
<td>0</td>
</tr>
<tr>
<td>Moderate: one or both legs raised for < 5 sec</td>
<td>1</td>
</tr>
<tr>
<td>Severe: unable to raise leg(s) against gravity</td>
<td>2</td>
</tr>
<tr>
<td>Gaze deviation</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Deviation of eyes or head</td>
<td>1</td>
</tr>
<tr>
<td>“Close your eyes” + “Make a fist”</td>
<td></td>
</tr>
<tr>
<td>Normal, both commands followed</td>
<td>0</td>
</tr>
<tr>
<td>Moderate: one command not followed</td>
<td>1</td>
</tr>
<tr>
<td>Severe: neither of the commands followed</td>
<td>2</td>
</tr>
<tr>
<td>“Whose arm is this?” + “Does your arm feel weak?”</td>
<td></td>
</tr>
<tr>
<td>Normal: recognizes arm, aware of impairment</td>
<td>0</td>
</tr>
<tr>
<td>Asomatognosia or anosognosia</td>
<td>1</td>
</tr>
<tr>
<td>Asomatognosia AND anosognosia</td>
<td>2</td>
</tr>
</tbody>
</table>

Probability of large vessel occlusion depending on summed score

<table>
<thead>
<tr>
<th>Score</th>
<th>Probability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8%</td>
</tr>
<tr>
<td>2</td>
<td>14%</td>
</tr>
<tr>
<td>3</td>
<td>22%</td>
</tr>
<tr>
<td>4</td>
<td>34%</td>
</tr>
<tr>
<td>5</td>
<td>47%</td>
</tr>
<tr>
<td>6</td>
<td>61%</td>
</tr>
<tr>
<td>7</td>
<td>72%</td>
</tr>
<tr>
<td>8</td>
<td>81%</td>
</tr>
<tr>
<td>9</td>
<td>86%</td>
</tr>
</tbody>
</table>
Swiss Stroke centres and units
Hospital phase

<table>
<thead>
<tr>
<th>S A F E</th>
<th>STROKE PATH</th>
</tr>
</thead>
</table>
| **Registration** | ? Symptoms, Symptom Onset
? ABCDE
? Arrival time |
| **ED/trauma room** | Inform ED or trauma room |
| **Prenotification** | CT/MRI, Anaesthesia |
| **Drip & ship?** | Notify team in case of drip and ship, angio suite free? |
| **ED arrival** | Start Stroke Clock App
Blood tests, 2nd venous line
Monitoring? criteria — — — — — — — — —
NIHSS (do not waste time)
ECG? only if chest pain or other clear indication |
| **Acute care nurse** | Acute care nurse accompanies every patient |
| **CT or MRI** | MRI, except in
• Pacemaker
• Implants not MR compatible
• Disturbance of consciousness
• History of implants not clear (e.g. aphasia, severe dementia)
• Vomiting + pregnancy ?? (→MR with contrast agent) |
| **MRI priority?** | Priority 1 ASAP
IVT/EVT indication
Symptom onset <12h
Priority 2 within 20 min
Presumably no IVT/EVT indication
Symptom onset 12–24h
Priority 3 within 3h
TIA > 2h otherwise S2
Symptom onset > 24h |
| **Arrival CT/MR** | MR questionnaire |
| **Monitoring MR** | Monitoring during MR
O₂ needed for Biox >92%
BP sys > 165 or < 100
HF > 110 or < 50
Pat. cannot ask for help by him/herself
Acute care nurse in MR if
Patient cannot ask for help by him/herself
Patient agitated
Not required if
DWI/SWI/TOF negative + no other indication for surveillance by physician |
| **Physician presence** | Obligatory in case of
Priority 1+2: always
Priority 3: if criteria for monitoring in MR are fulfilled (exception O₂ < 4l) |
| **Therapy decision** | IVT only if BP <185/105, CAVE fever endocarditis!), see chapter on contraindications for IVT
EVT decision on intubation together with interventionlist |
| **IVT/EVT** | IVT start in MR/CT
EVT Transfer of patient to interventionalist + anaesthesia in NeuroAngio |
| **Stroke Unit /ICU** | Request a bed SU/ICU |
| **Arrival SU/ICU** | ECG |
Indications and choice of therapy

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Vessel occlusion</th>
<th>Time & imaging results</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIHSS score ≥ 4 or NIHSS < 4 with relevant deficits (e.g. aphasia, hemianopsia, distal paresis, etc.) or consider in case of minor deficits and/or rapidly improving symptoms with persistent vessel occlusion</td>
<td>< 4.5</td>
<td>4.5–9 h</td>
</tr>
<tr>
<td></td>
<td>Treatment irrespective of core-perfusion mismatch</td>
<td>Usually independently of core-clinical mismatch or core-perfusion mismatch</td>
</tr>
<tr>
<td>ICA, Carotis-T, M1, M2</td>
<td>Bridging IVT + EVT</td>
<td>EVT §</td>
</tr>
<tr>
<td>P1, A1, VA</td>
<td>IVT + consider EVT</td>
<td>EVT or</td>
</tr>
<tr>
<td>M3/4, P2, A2</td>
<td>IVT, consider Urokinase i.a.</td>
<td>IVT if mismatch# or Urokinase i.a. until</td>
</tr>
<tr>
<td>BA</td>
<td>Bridging IVT + EVT</td>
<td>EVT §</td>
</tr>
<tr>
<td>No vessel occlusion</td>
<td>IVT</td>
<td>IVT if mismatch#</td>
</tr>
<tr>
<td>Ophthalmic artery/centralis retinae artery</td>
<td>IVT</td>
<td></td>
</tr>
<tr>
<td>spinal ischemia</td>
<td>IVT</td>
<td>IVT bis 6h erwägen</td>
</tr>
</tbody>
</table>

* Core-clinical mismatch (NIHSS ≥ 10 and core < 1/3 of the MCA territory (consider EVT in younger patients despite large core) or core-perfusion-mismatch

DWI-FLAIR mismatch (without or only minor FLAIR demarcation of the DWI lesion) or core-perfusion mismatch (core < 70mL, mismatch Ratio > 1.2)

§ if EVT cannot be performed due to technical/anatomical reasons: consider IVT also in case of large vessel occlusion > 4.5h after symptom onset in case of mismatch (see #)

Contraindications

<table>
<thead>
<tr>
<th>IVT</th>
<th>EVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute</td>
<td></td>
</tr>
<tr>
<td>Septic embolization, endocarditis, encephalitis, pancreatitis</td>
<td></td>
</tr>
<tr>
<td>Intracranial haemorrhage</td>
<td></td>
</tr>
<tr>
<td>INR > 1.7</td>
<td></td>
</tr>
<tr>
<td>Surgery at non-compressible sites within the past 10 days</td>
<td></td>
</tr>
<tr>
<td>Severe trauma</td>
<td></td>
</tr>
<tr>
<td>Intraparenchymal haemorrhage within the past 3 months</td>
<td></td>
</tr>
<tr>
<td>Delivery within the past 14 days</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal haemorrhage within the past 21 days</td>
<td></td>
</tr>
<tr>
<td>Blood pressure above 185 mmHg sys./105 mmHg dias. after BP treatment</td>
<td></td>
</tr>
<tr>
<td>Relative</td>
<td></td>
</tr>
<tr>
<td>Coagulopathy, incl. tumour-associated (e.g. in patients with leukaemia) and prolonged aPTT</td>
<td></td>
</tr>
<tr>
<td>Thrombocytopenia < 100,000</td>
<td></td>
</tr>
<tr>
<td>Pregnancy (IVT may be considered as off-label treatment)</td>
<td></td>
</tr>
<tr>
<td>Ischaemic stroke within the past 2 months</td>
<td></td>
</tr>
<tr>
<td>Septicaemia</td>
<td></td>
</tr>
<tr>
<td>Hypoglycaemia < 2.7 mmol/l or hyperglycaemia > 22.2 mmol/l</td>
<td></td>
</tr>
<tr>
<td>Sodium < 120 mmol/l or > 150 mmol/l</td>
<td></td>
</tr>
<tr>
<td>Severe underlying disease, short life-expectancy</td>
<td></td>
</tr>
</tbody>
</table>

Notes
- **IVT in patients previously treated with antiplatelet aggregation therapy**
 - Monotherapy: aspirin/clopidogrel/aspirin+dipyridamole/ticagrelor: no restrictions
 - Dual therapy: aspirin+clopidogrel: no restrictions; other combinations: consider IVT carefully
 - Monotherapy or combination therapy with prasugrel: consider IVT carefully
 - Triple therapies: no IVT
- **Bridging (IVT + EVT)**
 - normally full dose alteplase 0.9 mg/kg KG
 - normally no control imaging before EVT except in the case of clinical deterioration
- **Large infarction DWI/CBV (> 100 mL):** consider EVT in younger patients (< 75 years, and especially if < 60 years)
Dabigatran (Pradaxa®)
Rivaroxaban (Xarelto®)
Apixaban (Eliquis®)
Edoxaban (Lixiana®)

Emergency measurement of:
- anti-IIa activity
- thrombin time
- aPTT

Thrombin time normal
or anti-IIa activity not detectable

Anti-Xa activity not detectable
Anti-Xa activity not detectable

Anti-Xa activity not detectable

Consider IVT in individual situations with possible higher bleeding risk if:
(these recommendations require, in addition, normal coagulation)

Note: *Consider timepoint of measurement (potential further increase of activity if peak activity is not reached

Note: when administering 2/3 of the dose, stop the perfusor after 40 min.

IVT Dosage

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>Alteplase (Actilyse®)</th>
<th>Tenecteplase (Metalyse®)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sum dose 0.9 mg/kg</td>
<td>Bolus 10% in 1 min</td>
</tr>
<tr>
<td>44–47</td>
<td>40 mg = 40 ml</td>
<td>4 ml</td>
</tr>
<tr>
<td>48–51</td>
<td>44 mg = 44 ml</td>
<td>4 ml</td>
</tr>
<tr>
<td>52–54</td>
<td>47 mg = 47 ml</td>
<td>5 ml</td>
</tr>
<tr>
<td>55–57</td>
<td>50 mg = 50 ml</td>
<td>5 ml</td>
</tr>
<tr>
<td>58–62</td>
<td>54 mg = 54 ml</td>
<td>5 ml</td>
</tr>
<tr>
<td>63–67</td>
<td>59 mg = 59 ml</td>
<td>6 ml</td>
</tr>
<tr>
<td>68–72</td>
<td>63 mg = 63 ml</td>
<td>6 ml</td>
</tr>
<tr>
<td>73–77</td>
<td>68 mg = 68 ml</td>
<td>7 ml</td>
</tr>
<tr>
<td>78–82</td>
<td>70 mg = 70 ml</td>
<td>7 ml</td>
</tr>
<tr>
<td>83–88</td>
<td>77 mg = 77 ml</td>
<td>8 ml</td>
</tr>
<tr>
<td>89–92</td>
<td>80 mg = 80 ml</td>
<td>8 ml</td>
</tr>
<tr>
<td>93–97</td>
<td>86 mg = 86 ml</td>
<td>9 ml</td>
</tr>
<tr>
<td>≥98</td>
<td>90 mg = 90 ml</td>
<td>9 ml</td>
</tr>
</tbody>
</table>

Note: when administering 2/3 of the dose, stop the perfusor after 40 min.
Monitoring during IVT + EVT

IVT
1. Measure BP every 5 minutes: target sys. ≤ 185 mmHg, diast. ≤ 105 mmHg
 - in the case of > 185/105: re-check after 5 minutes
 - if BP persists > 185/105: BP lowering (see Antihypertensive medications, below)
2. Respiration: control of oxygen saturation: target Biox > 92%
3. Evaluation of pupils: 3 × per hour
 - in case of clinical deterioration: stop alteplase; CT: haemorrhage?
 - in case of allergic reaction: stop alteplase, administer clemastine 2 mg, methylprednisolone 250 mg i.v.
 for extreme anaphylaxis: adrenaline 0.3–0.5 mg s.c.; for very extreme anaphylaxis: adrenaline 0.05–0.1 mg i.v.
 - in case of plasma glucose > 11 mmol/l: reduce carefully with insulin

EVT
- during EVT BP MAP aim for 70–90 mmHg; after successful reperfusion (TICI 2b&3): < 140/95 mmHg

Antihypertensive medication (iv)

<table>
<thead>
<tr>
<th>Use (standard values)</th>
<th>Medication</th>
<th>Dosage</th>
<th>Maximum effect</th>
<th>Warnings/Side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>bolus administration</td>
<td>Urapidil</td>
<td>2.5–10 mg (1 ml = 5 mg) max 50 mg/d</td>
<td>10 min</td>
<td>Vertigo, headache, dyspnoea, arrhythmia (tachycardia or bradycardia)</td>
</tr>
<tr>
<td>bolus administration for HR > 70/min</td>
<td>Labetolol</td>
<td>5–10 mg (1 ml = 5 mg) max 200 mg/d</td>
<td>15 min</td>
<td>Bradycardia, AV-block, hypotension, vertigo, nausea, paresthesia, bronchial spasm</td>
</tr>
<tr>
<td>bolus administration for HR > 70/min</td>
<td>Metoprolol</td>
<td>1–2.5 mg (1 ml = 1 mg) max 15 mg/d</td>
<td>5 min</td>
<td>Bradycardia, AV-block, low output syndrome, bronchial spasm</td>
</tr>
<tr>
<td>bolus administration for HR < 70/min</td>
<td>Dihydralazin</td>
<td>6.25 mg slowly over 2 minutes (1 ml = 12.5 mg) max 100 mg/d</td>
<td>20 min</td>
<td>Oedema, tachycardia, angina pectoris; exercise caution in the case of liver or renal failure CI: Coronary insufficiency</td>
</tr>
<tr>
<td>Perfusion therapy</td>
<td>Urapidil</td>
<td>5–10 mg/h max. 40 mg/h</td>
<td>–</td>
<td>Restricted to 48 h therapy</td>
</tr>
<tr>
<td>Perfusion therapy</td>
<td>Labetolol</td>
<td>10–40 mg/h max 100 mg/h (1 ml = 1 mg)</td>
<td>–</td>
<td>Bradycardia, AV-block, hypotension, vertigo, nausea, paresthesia, bronchial spasm</td>
</tr>
</tbody>
</table>

Vasopressor therapy (iv)

<table>
<thead>
<tr>
<th>Use (standard values)</th>
<th>Medication</th>
<th>Dosage</th>
<th>Start</th>
<th>Warnings/Side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfusion therapy</td>
<td>Noradrenalin</td>
<td>Maximal dosage 0.1 µg/kg BW/7 min Higher dosage only on ICU</td>
<td>Start with 0.01 µg/kg BW/min then titrate</td>
<td>CI: Hyperthyreosis, tachycardia arrhythmias, angle-closure glaucoma, pheochromocytoma, cardiomyopathy (esp. hypertrophic) Compensate hypovolaemia first</td>
</tr>
</tbody>
</table>
First neurological examination immediately after arrival

Cardiovascular monitoring:
- BP upper limits during the early phase:
 \[\leq 185/105 \text{ mmHg after IVT} \]
 \[\leq 140/95 \text{ mmHg after successful EVT (TICI 2b or 3), otherwise } \leq 185/105 \text{ mmHg} \]
 \[\leq 220/110 \text{ mmHg in conservatively treated patients} \]
- BP lower limit: only in selected cases in case of hypoperfusion/symptom worsening with drop of BP => to increase BP: only temporary administration of a limited volume of infusion solution (max. 500 ml); in other cases use vasopressors (e.g. Noradrenaline)
- Tachycardia > 100 bpm => usually beta blockers; in case of tachycardic atrial fibrillation consider adding digoxin
- Frequent ventricular extrasystole => magnesium 2 g i.v.
- Bursts of ventricular extrasystole (more than 3 beats): usually beta blocker + magnesium; ≥10 beats or polymorph or >120/min or clinically symptomatic => consultation with cardiologist
- Bradycardia: during sleep in asymptomatic patients, usually up to 35 bpm is tolerable
- Pause > 3 seconds => consultation with cardiologist

Respiration:
- target Biox ≥ 92;
- screening for sleep apnoea
- If > 4l O\textsubscript{2}/min is necessary or respiration frequency > 20 => clinical examination, arterial blood gas analysis, chest X-ray (pulmonary embolism? cardiac failure? pneumonia?)
- If respiration frequency > 25–30 there may be a danger of respiratory exhaustion

Body temperature:
- \(\geq 38^\circ \) -> antipyretics (1st choice paracetamol) + 2x2 blood cultures, empirical/causal treatment

Neurological evaluation:
- usually every 2h during the first 24h

Clinical general medical evaluations:
- cardiac compensation, lungs, abdomen to be checked daily

Prescription of medication:
- Do not prescribe antiplatelet aggregation therapy after IVT/i.a Urokinase before exclusion of haemorrhage in control CT/MRI after 24h
- General cardiac premedication should be continued, with potential reduction of dose (WARNING cardiac failure/rebound tachycardia after stop)
- Stop any antihypertensive medication in the case of haemodynamic stroke

Laboratory controls:
- (24h after IVT/EVT)
 - Hb, Lc, Tc, CRP, glucose, Na, K, creatinine, INR
 - hs-Troponin T and ECG after 1 h if initially abnormal
 - Anaemia: transfusion if Hb < 90 g/l
 - Tc daily under heparin therapy; further laboratory examinations individually determined

Neuroradiological control:
- 24h after IVT/EVT, MRI (or CT), including MRA (CTA) except in patients with severe renal insufficiency
- In case of neurological deterioration immediately

Swallowing:
- in case of dysphagia, reduced consciousness, facial palsy or relevant neuropsychological deficits: swallowing test (GUSS: Gugging Swallowing Screen)

Nutrition and fluid balance:
- Daily fluid intake requirement: 30–35 ml/kg body weight
- Daily energy demand: 35 kcal x body weight
- If sufficient oral energy supply cannot be given within 3 days after stroke: enteral feeding via nasogastric tube with high caloric fibrous enteral feeding as bolus application 3–4x/d; control of electrolytes (incl. magnesium and phosphate)
- If fasting period > 7 days: delayed feeding (WARNING refeeding syndrome)
Mobilization

<table>
<thead>
<tr>
<th>Day 0</th>
<th>Day 1 and thereafter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subacute stroke > 2d</td>
<td>No penumbra, not pontine/internal capsule stroke</td>
</tr>
<tr>
<td>TIA without vessel occlusion</td>
<td>Persistent penumbra, severe hypoperfusion, haemodynamic watershed infarcts/symptoms</td>
</tr>
<tr>
<td>Small infarcts, without symptoms, without vessel occlusion,</td>
<td>Reperfusion, not pontine/internal capsule stroke</td>
</tr>
<tr>
<td>conservative treatment</td>
<td>Persistent penumbra</td>
</tr>
<tr>
<td>Infarct, NIHSS ≥ 1, without vessel occlusion, conservative</td>
<td>Mobilization without restriction</td>
</tr>
<tr>
<td>treatment</td>
<td>Mobilization delayed (possibly slower in case of persistent penumbra or mobilization-</td>
</tr>
<tr>
<td>Vessel occlusion/haemodynamic watershed infarcts/symptoms,</td>
<td>dependent symptoms)</td>
</tr>
<tr>
<td>conservative treatment</td>
<td>30° (supine position if possible)</td>
</tr>
<tr>
<td>IVT/EVT/Bridging</td>
<td>Persistence penumbra</td>
</tr>
</tbody>
</table>

Daily checklist – visiting stroke patients

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NIHSS and symptom-orientated functional examination (results of physio-, ergo-therapy, speech therapy); depression? sleep-wake disorder?</td>
<td>Cardiac compensation, lung, abdomen, fever?</td>
<td>Relevant rhythmic disorders (regarding reason, haemodynamic, cardiac pathology) BP target value? BP actual value?</td>
<td></td>
<td></td>
<td>Especially electrolytes, inflammation parameters, kidney, haemostasis</td>
<td>Antithrombotic therapy? Deep vein thrombosis prophylaxis? BP therapy?</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prevention of deep vein thrombosis

- In case of IVT, bridging, Urokinase initiation: after exclusion of cerebral haemorrhage in the follow-up-imaging
- After mechanical thrombectomy without IVT and with conservative therapy: start immediately
- Under heparin Tc control on day 1, then every 3 days (HIT?, 4Ts score)
- Pneumatic compression stockings may be an alternative if LMWH is contraindicated
DD Neurological deterioration

- Reinfarction
- Infarct localization: e.g. secondary deterioration more frequent in internal capsula or pontine infarctions
- Haemodynamic: BP associated? Associated with mobilization?
- Bleeding
- Rising ICP
- Epileptic seizure
- Infection
- Sedation
- Psychogenic
and other less frequent causes

Alteplase-associated ICH

In the case of symptomatic ICH or neurological deterioration within 24 after Alteplase administration:
- Stop Alteplase
- Blood tests: thrombocytes, INR, aPTT, fibrinogen, type and cross-match
- CT; in case of bleeding:
 - Fibrinogen (Haemocomplettan P) or Prothrombin complex concentrate (involve haematology)
 - Tranexamic acid (Tranexam OrPha) i.v. 1000 mg, apply over 10min
- BP aim ≤ 140/90 mmHg

DD Myocardial inf. DD stress cardiomyopathy

hsTnT-elevation in approx. 20% of ischaemic stroke patients, DD: MI, stress cardiomyopathy (SCM), renal failure, hypertensive crisis, tachycardia, aortic dissection

Variable manifestation of SCM: hsTnT ↑ < regional hypokinesia < transient apical ballooning

- The extent of hsTnT-elevation does not discriminate between MI and SCM
- SCM is an exclusion diagnosis
- In case of doubt consider cardiac MRI (best discrimination) or ergometry

Possible practical approach in case of hsTnT-elevation:
- Clinical correlate for MI (repolarization disturbance a./o. angina pectoris) → coronary angiography
- No clinical correlate: repeat ECG and hsTnT after 1 and 3 h, and, if necessary, after 6 h:
 - hsTnT without relevant change (<20%): renal failure? heart failure? hypertensive state?
 - hsTnT change >20%: consider cardiac MRI or coronary angiography
General
- Usually 30° supine position
- BP aim: MAP > 85 mmHg, sys. < 220 mmHg
- **In case of imminent craniectomy: stop antiplatelet therapy**
- Pneumatic compression stockings for prevention of deep vein thrombosis
- Consider as emergency medication until craniectomy:
 - mannitol/hypertonic saline solution (dosage control of mannitol via osmotic gap, hypertonic saline solution via Na and osmolality)
 - Hyperventilation

Decompressive craniectomy
- **Craniectomy if possible within 24–48 h** and before relevant neurological deterioration
- Critical phase with risk for neurological deterioration: 24–96 h (rarely up to as late as 10 d)
- Signs of rising ICP: decreasing consciousness, disturbance of pupillomotor function usually with dilatation in case of supratentorial swelling, and miosis in case of infratentorial swelling, increasing paresis, new ipsilateral paresis, pathological breathing pattern, rhythmic disorders
- **Possible practical approach:**
 o general actions see above
 o frequent clinical control and early CT control (e.g. 12 h after stroke) in case of infarct >2/3 middle cerebral artery territory or larger infratentorial stroke (e.g. complete PICA infarct or larger)
 o aim: preventive decompression! Rescue therapy only in exceptional circumstances and probably associated with worse outcome

Malignant infarctions of the middle cerebral artery territory
Predictors for malignant infarction: young patient, persistent vessel occlusion, early midline shift ≥ 4mm, critical infarct volume dependent upon age/atrophy but >>80 ml or >1/2 media territory, additional infarction in anterior or posterior territory

Indications for craniectomy
1. Usually < 60 years, individually consider also in older patients
2. Symptom onset within the past 48 h (in exceptional cases this may be longer)
3. Infarction of at least half of the middle cerebral artery territory
4. Consent of patient or family
5. Indication independent from affected hemisphere (dominant vs. non-dominant)

Contraindications
1. Bilateral fixed pupils and coma
2. More than 3 of the following unfavourable prognostic factors:
 a. age >50 years
 b. infarction extends beyond the middle cerebral artery territory
 c. unilateral dilated pupil
 d. GCS <8
3. Severe comorbidity; severe preexisting disability

Malignant cerebellar infarctions
Predictors for malignant infarction: young patient, persistent vessel occlusion, bilateral infarction, the size has less predictive value because small infarcts may induce large oedema

Indications for craniectomy
1. Larger infratentorial ischaemia (e.g. complete PICA stroke)
2. Imaging shows space-occupying infarction with progression in short term follow-up imaging
3. Consent of patient or family

Contraindications
1. Clinical or imaging signs of severe irreversible brainstem damage
2. Severe comorbidity, severe preexisting disability
Agitation/delirium

General

- Screening: CAM (Confusion Assessment Method)
- Follow-up parameter: RASS (Richmond Agitation Sedation Scale):

<table>
<thead>
<tr>
<th>+4 combative</th>
<th>+3 very agitated</th>
<th>+2 agitated</th>
<th>+1 restless</th>
<th>0 alert and calm</th>
</tr>
</thead>
<tbody>
<tr>
<td>–5 unarousable</td>
<td>–4 deep sedation</td>
<td>–3 moderate sedation</td>
<td>–2 light sedation</td>
<td>–1 drowsy</td>
</tr>
</tbody>
</table>

Diagnostic criteria ICD-10

1. **Reduced attention** → reduced perception of environment
2. **Disordered thinking**, manifest through
 - limited short-term memory
 - Disorientation (place, time, person)
3. **Psychomotor abnormalities**, of the following:
 - rapid, unpredictable change from hypo- to hyperactivity
 - extended reaction times
 - changed speaking speed
 - startle reaction
4. **Sleep abnormalities**, at least one of the following:
 - insomnia with or without daytime sleepiness
 - symptoms worse at night
 - nightmares (can sometimes continue into the day as hallucinations/illusional misjudgement)
5. **Acute onset** and **fluctuating** throughout the day
6. Evidence of an organic brain or systemic disease (partly) responsible

Treatment

1. **Eliminate/treat cause**
2. **Non-drug therapy measures**
 - circadian rhythmization
 - Stimulus reduction

Symptomatic therapy

In case of alcohol withdrawal delirium, 1st choice is benzodiazepines, otherwise use the following scheme:

Level 1: Pipamperone 20 mg stepwise (maximal dose 360 mg/d)
- or Quetiapine 12.5 mg stepwise (maximal dose 800 mg/d)
- or/and Risperidone 2×0.5 mg/d (maximal dose 16 mg/d)
- or exceptional Haloperidol (Haldol®) 0.5–1 mg stepwise (maximal dose 60 mg/d)

WARNING: arrhythmia → apply i.v. only exceptionally under monitoring

Level 2: Diazepam 5 mg stepwise i.v. (increase up to 10 mg stepwise is possible)
- or Midazolam: 2.5–5 mg as bolus (maximal dose 10 mg)

then, if necessary, 2–5 mg/h perfusion therapy (maximal dose 10 mg/h) – antidote: Flumazenil

Level 3: Clonidine: 25–50 μg as bolus, then 25–150 μg/h perfusion therapy (maximal dose 150 μg/h)

Level 4: Dexmedetomidine or Propofol with perfusor in ICU

Special case, delirium in patients with stroke and Parkinson’s disease

- **Quetiapine (Seroquel®)** 25–100 mg p.o., max. 300 mg/d
- **Clozapine (Leponex®)** 6.25–12.5 mg, max. 100 mg/d; 2/3 of the dose at night, 1/3 throughout the day

Special case, delirium in patients with stroke and alcohol withdrawal

- Primarily benzodiazepines + thiamine substitution
TIA and minor stroke

Perform MRI in clinical TIA patients whenever possible
Pathological definition of TIA: transient neurological deficit without diffusion restriction in MRI
Time-dependent definition of TIA: transient neurological deficits of < 24 h duration
Definition of minor stroke: NIHSS ≤ 4, symptoms stable or improving

DD TIA, seizure, migraine aura

TIA: usually negative symptoms, spread of symptoms usually fast
Seizure: usually positive symptoms, spread of symptoms fast
Migraine aura: usually positive symptoms, spread of symptoms over minutes

ABCD2 Score (Stroke Risk after TOA)

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥ 60 years</td>
<td>1</td>
</tr>
<tr>
<td>Systolic BP ≥ 140 or diastolic ≥ 90</td>
<td>1</td>
</tr>
<tr>
<td>Unilateral weakness with or without speech disturbance</td>
<td>2</td>
</tr>
<tr>
<td>Speech disturbance without weakness</td>
<td>1</td>
</tr>
<tr>
<td>TIA duration ≥ 60 min</td>
<td>2</td>
</tr>
<tr>
<td>TIA duration 10–59 min</td>
<td>1</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1</td>
</tr>
</tbody>
</table>

6–7 points: high 2-day risk (8%)
4–5 points: intermediate 2-day risk (4%)
0–3 points: low 2-day risk (1%)

Discharge after completion of diagnostic workup, latest after 24 h
- begin secondary prevention
- long-term ECG (see scheme)
- Re-evaluation by general practitioner next day
- if indicated, neurovascular sonography
- neurological check-up after 2 weeks
Frequent causes

<table>
<thead>
<tr>
<th>Cardioembolism/paradoxical embolism</th>
<th>Other causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial fibrillation/flutter</td>
<td>Dissection (incl. aorta)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>Small artery disease (lacunar <1.5 cm + BG)</td>
</tr>
<tr>
<td>Other dysrhythmia (e.g. sick sinus syndrome, silent atrium)</td>
<td>Vasculitis</td>
</tr>
<tr>
<td>Valve disease</td>
<td>Chronic infection (in particular HIV, Hep B/C, syphilis)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Factor V Leiden/thrombophilia/anti-cardiolipin/lupus anticoagulant</td>
</tr>
</tbody>
</table>

Paradox embolic

<table>
<thead>
<tr>
<th>Paradox embolic</th>
<th>Other causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFO/ASD</td>
<td>Acute coagulation disorders (especially DIC)</td>
</tr>
<tr>
<td>Pulmonary shunt</td>
<td>Fabry disease</td>
</tr>
</tbody>
</table>

Large artery disease

<table>
<thead>
<tr>
<th>Large artery disease</th>
<th>Other causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterio-arterial embolism</td>
<td>Polyglobulia/thrombocytosis</td>
</tr>
<tr>
<td>Aortic arch embolism</td>
<td>Drugs</td>
</tr>
<tr>
<td>Non atherothrombotic vasculopathy (e.g. FMD)</td>
<td>Iatrogenic (e.g. periinterventional)</td>
</tr>
</tbody>
</table>

Etiological DD according to results

DD according to medical history and physical examination

- Circumstance at onset (e.g., Valsalva?)
- Positive familial history with onset < 40 years (Fabry disease, coagulopathy)
- < 50 years, previous art/ven thrombosis, abortion (anti-phospholipid syndrome), Fabry disease
- Throat/neck/eye pain, trauma (dissection ICA/VA)
- Headache (vasculitis), thunderclap headache (reversible vasoconstriction syndrome)
- Heart murmurs (endocarditis, valvular calcification)
- Angina pectoris (acute or in the past)
- Acute chest/back pain (aortic dissection, coronary syndrome)
- Peripheral vascular examination incl. BP-difference left-right (aortic dissection)
- Skin lesions (septic emboli, Fabry: angiokeratoma, Sneddon: livedo racemosa)
- Vision disturbance + hearing disturbance (Susac’s syndrome => corpus callosum affected?)
- Signs of systemic rheumatic disease
- B symptoms
- Acute or chronic infection

DD according to laboratory results

- Thrombocytopenia/Thrombocytosis, Leucocytopenia: haematological disease?
- Anaemia: Malignancy? Sickle cell anaemia?
- D-Dimer
 - < 500: more likely arterio-arterial, aorto-embolic, microvascular
 - 500–3000: associated with atrial fibrillation
 - > 3000: Malignancy? Coagulopathy?

DD according to MRI

- 2 vessel territories affected: cardio-embolic, aorto-embolic, coaguloathy (D-Dimer? Fibrinogen?), paradox embolic, vasculitis
- 1 vessel territory with multipe ischaemia: arterio-arterial (Plaque-MRI?)
Suspected endocarditis (fever/infect unclear, multiple emboli)
Infarcts in multiple territories
Re-stroke unknown aetiology
Known aetiology (e.g. symptomatic ICA stenosis)
Already given indication for (D)OAC
PFO occlusion considerable

Long-term ECG decision tree

Previous indication for (D)OAC

- no

Known stroke aetiology (not AF)

- yes

Stroke cryptogenic ≥ 65 years old

- yes

Stroke cryptogenic < 65 years old

High risk for AF (≥1 RF+)

- Risk factors for AF:
 - NT-proBNP >400 pg/mL
 - LAVI >42 mL/m² (or LA-diameter >46 mm)
 - recurrent strokes
 - multi-territorial infarcts
 - frequent SVEs or supra-ventricular runs

- Low risk for AF

1x 7-d ECG, then event-recorder

1x 7-d ECG

3x 7-d ECG

3x 7-d ECG

Echocardiography decision tree

Suspected endocarditis (fever/infect unclear, multiple emboli)

- yes

Infarcts in multiple territories

- yes

Re-stroke unknown aetiology

- yes

Known aetiology (e.g. symptomatic ICA stenosis)

- yes

Already given indication for (D)OAC

- yes

PFO occlusion considerable

- yes

TTE or TTE (see scheme below)

- no

Long-term ECG (see scheme below)

- no

TEE or TTE (see scheme below)

- no

Routine laboratory testing: Na, K, CRP, ESR, glucose, HbA1c, creatine, urea, hs-Troponin T, CK, CK-MB, AST, ALT, GGT, TSH, pro-BNP, D-dimer, complete blood count, coagulation state, blood lipids

- no

< 50 years: additionally lupus anticoagulant, anti-cardiolipin (IgG+M, not AI), anti-b2GPI (IgG+M, not AI) (if elevated after 3 months, repeat).
Criteria for the classification of symptomatic carotid artery stenosis:
- confirmation by a neurologist
- very likely: proof of a plaque rupture with apposition thrombus in CT/MR-angiography
- probable: internal carotid artery stenosis of at least 50% + typical stroke distribution pattern in MRI, with no other cause of the stroke (TEE/TTE and at least 24-hour ECG monitoring test)

In general: CEA/stenting usually within a few days after symptom onset
* - always high-dose statin therapy, for antiplatelet aggregation therapy see below

<table>
<thead>
<tr>
<th>ICA stenosis extracranial</th>
<th>in case of CEA, elective:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- normally pre- and postoperative aspirin 100 mg or clopidogrel 75 mg monotherapy (stroke occurrence under aspirin or clopidogrel: consider aspirin 100 mg + clopidogrel 75 mg perioperatively)</td>
</tr>
<tr>
<td></td>
<td>- in case of additional atrial fibrillation, as long as anticoagulation is possible (depending upon infarct size): begin aspirin 100 mg 1 d preoperatively, therapeutic heparinization until surgery. After surgery: 7 d aspirin 100 mg + prophylactic heparin, then stop aspirin/heparin and begin (D)OAC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>in case of stenting, elective:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- preinterventional aspirin 100 mg + clopidogrel 75 mg (possibly loading dose); postinterventional aspirin 100 mg + clopidogrel 75 mg for at least 6 months (depending on device type, result after stenting, follow up results), then monotherapy</td>
</tr>
<tr>
<td>- in case of additional atrial fibrillation, as long as anticoagulation is possible (depending upon infarct size): normally N(OAC) + aspirin 100 mg; start aspirin at least 1 day before intervention</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In case of CAS (stenting) during acute intervention:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Aspirin 250–500 mg i.v. during stenting, control imaging afterwards for exclusion of bleeding, then start Clopidogrel, 75 mg (preferably without loading or loading with only 150 mg)</td>
</tr>
<tr>
<td>- in case of brain perfusion is critically dependent upon stented ICA: control imaging after 6 h for exclusion of bleeding, then Clopidogrel (whenever possible with loading after weighing risk/benefit)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In case of apposition thrombus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stenosis > 50%: CEA/CAS as early as possible, consider transient therapeutic heparinization (1st choice LMWH) + statin high dose (for example, atorvastatin 80 mg)</td>
</tr>
<tr>
<td>Stenosis > 50%: therapeutic heparinization (1st choice LMWH) + statin high dose; control MRI after 2 and 7 days; CEA/CAS in case of new ischaemia or persistent thrombus; in case of decrease of thrombus, consider conservative treatment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stenosis of vertebral artery origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stenting normally only in cases of failure of best medical treatment (including transient therapy with aspirin + clopidogrel)</td>
</tr>
<tr>
<td>preinterventional aspirin 100 mg + clopidogrel 75 mg (possibly as loading dose)</td>
</tr>
<tr>
<td>postinterventional aspirin 100 mg + clopidogrel 75 mg usually for 12 months with drug-eluting stents, otherwise 6 months; then monotherapy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intracranial artery stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin 100 mg + clopidogrel 75 mg for 3 months, then de-escalate to monotherapy + statin at a high dose (for example atorvastatin 80 mg)</td>
</tr>
<tr>
<td>Stenting should be performed only in exceptional cases and after failure of medical therapy</td>
</tr>
</tbody>
</table>

Hyperperfusion syndrome:
- after revascularization of haemodynamically relevant stenosis there is a danger of hyperperfusion syndrome
- risk factors: high grade stenosis, bilateral stenosis, perioperative hypertension, diabetes, female sex, age > 75 years, reduced reserve capacity
- clinically: headache, seizures, neurological deficits; risk: intracerebral haemorrhage
- occurrence 12 h–7 d after revascularization

→ therefore BP should normally be kept at < 140/100 mmHg postoperatively/postinterventionally
- in case of pronounced oedema poss. additional dexamethasone
Arguments for and against CEA/CAS

<table>
<thead>
<tr>
<th>Arguments for</th>
<th>Arguments against</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEA</td>
<td>CAS (Stenting)</td>
</tr>
<tr>
<td>Anticipated interventional risk</td>
<td>individually</td>
</tr>
<tr>
<td>Technical access</td>
<td>individually</td>
</tr>
<tr>
<td>Malcompliance</td>
<td>pro CEA</td>
</tr>
<tr>
<td>Prothrombotic status</td>
<td>pro CEA</td>
</tr>
<tr>
<td>Bleeding tendency, previous bleeding under antiplatelet therapy</td>
<td>pro CEA</td>
</tr>
<tr>
<td>Appositional thrombus with floating parts</td>
<td>pro CEA</td>
</tr>
<tr>
<td>Severe renal insufficiency</td>
<td>pro CEA</td>
</tr>
<tr>
<td>Re-stenosis after CEA/CAS</td>
<td></td>
</tr>
<tr>
<td>Post-radiation stenosis</td>
<td></td>
</tr>
<tr>
<td>Con-tralateral recurrence paresis</td>
<td></td>
</tr>
<tr>
<td>Con-tralateral carotid paresis</td>
<td>pro CAS</td>
</tr>
<tr>
<td>Indication for (D)OAC with high embolic risk when paused</td>
<td>pro CAS</td>
</tr>
<tr>
<td>Mechanical heart wave</td>
<td>pro CAS</td>
</tr>
</tbody>
</table>

Dissections

- According to current data the preventive effects of aspirin and OAC are probably comparable
- In cases of higher grade extracranial stenosis due to dissection or occlusions without large infarction or haemorrhagic transformations, consider OAC/therapeutic heparinization followed by OAC
- OAC is generally contraindicated in the case of intradural dissections or dissections extending intradurally (elevated risk for SAH)
- In the case of uncertain diagnosis with fat-suppressed T1 sequences in MRI: extend to regular diagnostic work-up after stroke
- Off-label use of DOAC can be considered in individual cases if OAC cannot be adjusted
- Duration of secondary prevention with aspirin/OAC: switch from OAC to aspirin after 3–6 months; continue aspirin 100 mg/d as long-term prophylaxis

PFO

Occlusion of PFO in the case of cryptogenic stroke (at least TTE/TEE and one 7-day ECG negative) and/or RoPE score > 5 in patients < 60 years. The decision should be made individually and RoPE score serves as orientation. Consider circumstances that may facilitate paradoxical embolism (e.g. deep vein thrombosis, onset of neurological symptoms after Valsalva manoeuvre, co-existence of atrial septal aneurysm or eustachian tube (increase possibly recurrent risk) and poss. psychological factors).

Antiplatelet aggregation inhibitors should be continued lifelong after occlusion of PFO.

<table>
<thead>
<tr>
<th>RoPE score (risk of paradoxical embolism)</th>
<th>Sum 0–3</th>
<th>0% PFO attributable risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No hypertension</td>
<td>1</td>
<td>Age 18–29</td>
</tr>
<tr>
<td>No diabetes mellitus</td>
<td>1</td>
<td>Age 30–39</td>
</tr>
<tr>
<td>No previous stroke/TIA</td>
<td>1</td>
<td>Age 40–49</td>
</tr>
<tr>
<td>Non-smoker</td>
<td>1</td>
<td>Age 50–59</td>
</tr>
<tr>
<td>Cortical infarct localization</td>
<td>1</td>
<td>Age 60–69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age ≥ 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cerebral Vasculitides

History
- B-Symptoms, recent infections
- Headache: thunderclap, temporal/occipital pain
- Visual, hearing impairment, eye-pain sicca symptoms
- Oral/genital aphthae, sinusitis/epistaxis, asthma/cough
- Reynaud, arthralgia, skin changes
- Previous illnesses: lymphoma/leukaemia
- Immunosuppression: Diabetes, HIV, Immundefect
- Medicaments: e.g. checkpoint inhibitors
- Drugs: especially cocaine and amphetamines
- Foreign travel/contact with animals/unpasteurized milk
- Family History

Status
- General internal status
- Auscultation over all large vessels
- Palpitation of temporal arteries
- Blood pressure at all extremities
- Skin: livedo, nailfold bleeding, distal emboli, angio keratoma
- Joints: redness, swelling, pressure sensitivity, hyperelasticity
- Eyes: visual acuity, ocular fundus
- ENT: hearing test, Weber-/Rinne

Blood
- BSR, CRP, differential blood count, LDH, CK, liver, kidney, ferritin, calcium, TSH, immune fixation + free light chains in serum, IgG/M/A
- Coagulation status including fibrinogen, D-dimer, lupus anticoagulant
- RF IgM, CCP, ANA, ANCA, SS-A, SS-B, dsDNA, cardiolipin-/-beta-2-glycoprotein-IgM/IgG, C3/C4
- Urine drug screening
- Infectious serology: HIV, hepatitis B, C, Lues, VZV, quantiferon test (before starting steroids, otherwise ELISpot)
- If there is fever or increased CRP: 3x2 blood cultures (endocarditis scheme)

Liquor
- Standard including IEF
- Cytology
- If necessary, flow cytometry with CD4+/CD8+ quotient and haemat. Immune cell phenotyping
- BioFire, CXCL13, liquor-/serum index for borreliosis, VZV, HSV (consider eubacterial/panfungal PCR)
- Preserve 3 spare tubes (in case of suspected TBC one tube with 10 ml)

Urine
- Urine status, protein/albumin/creatinine quotient
- In case of hematuria (WARNING bladder catheter)
- If necessary, urine sediment by nephrologist

Additional examinations
- MRI mit dark blood- and T1 space sequences, perfusion
 → if inconclusive: cerebral angiography
- nvUS intra- and extracranial vessels
- >45 y or ANCA+: including temporal arteries; large vessel involvement → arm arteries
- TEE
- CT thorax (abdomen/pelvis if B-symptoms)
- Consult ophtalmology: If necessary fluorescence angiography, OCT angiography, vitreous puncture
- If necessary, consult rheumatology
- If necessary, consult infectiology eubacterial/panfungal PCR, next generation sequencing
- Hole body PET in case of unclear large vessel affection /suspicion of sarcoidosis, lymphoma, small vessel vasculitis

Biopsy CNS
(diagnosis confirmed in 10–30%, alternative diagnosis in 30–50%)
- Early pause of antiplatelet agents
- Target region: contrast enhanced non-eloquent areas; otherwise frontal lobe in non-ischemic area
- Sample: meninges + cortex + white matter
- Analysis incl. bacteriology for detecting acid-fast rods, PCR mycobacteria, bacteria, fungi, in case of suspicion, also virus PCR

Biopsy other body regions
Evaluation before CNS biopsy (eye, temporal arteries, nasal mucosa, lymph nodes, skin, muscle, nerve, kidney, lung, liver, bone marrow)

Note: Small vessel vasculitis can only be detected with biopsy (MRA and DSA negative)

Radiologically suggestive: multiple ischaemias (WARNING DD emboli, coagulopathy, intravascular lymphoma, MELAS, etc.).

Clinically suggestive: clinical findings clearly exceeding the detected ischemia.

WARNING DWI lesion without perfusion deficit → lymphoma?
Primary cerebral vasculitis (PACNS)

(no pathognomonic clinical or paraclinical signs)
- **Clinic** headache (60%), cognitive deficits (50%), seizures (15%), rarely B-Symptoms
- **Blood** Elevated inflammation parameters (< 25%), otherwise normal
- **Liquor** Pleozytosis (50%), protein elevation (70%), intrathekale IgG
- **Radiology** ischemic lesions, hemorrhagic lesions (10%), contrast-enhancing lesions (30%), meningeal contrast enhancement (20%), arterial stenosis in MRA (55%) resp. DSA (75%)
- **Biopsy**

Systemic vasculitis/inflammatory disease

- **Takayasu’s arteritis:** < 50 years. Carotidodynia, brachial claudication, visual disturbance (retinopathy) → rheumatism (US of the large vessels), MRA thorax/abdomen or PET-CT (before steroid administration)
- **Giant cell arteritis:** > 50 years. B-Symptoms, AION/ZAV, temp./occipital headache, intermittent claudication, arthralgia → rheumatism (US temporal artery and large vessels), MRA thorax/abdomen or PET-CT, biopsy temporal artery (before steroids)
- **Panarteriits nodosa:** HBV/HCV, B-Symptoms, neuropathy/myalgia/CK ↑, arthralgia, palp. purpura/livedo, abdominal sulfamethoxazole, NI (no glomerulonephritis), microaneurysms → ANCA neg., abdom. angiography (aneurysms)
- **Kawasaki syndrome:** children, adolescents, fever, conjunctivitis/uveitis, mucous/skin changes, lymphadenopathy → clinical criteria
- **Granulomatosis with polyangiitis:** hypertrophic pachymeningitis, pituitary gland, cranial nerves/neuropathy/mononeuritis multiplex, sinusitis/otitis media, pneumopathy, kidneys (RPGN) → ENT (biopsy NNH), lung (Lufu), kidney (urine sediment)
- **Microscopic polyangiitis:** neuropathy/mononeuritis multiplex, livedo/palp. purpura, kidneys (GN), pneumopathy → nephro. (urine sediment)
- **Eosinophilic granulomatosis with polyangiitis:** mononeuritis multiplex, AION, sinusitis/otitis media, asthma, skin (subcutaneous nodules/ulceration/petechiae), kidneys (GN), eosinophilia → lab. (IgE), ENT (biopsy), lung (BAL, biopsy), kidney (urine sediment)
- **Cryoglobulinemia:** haematological disorder (monoclonal Ig, MGUS, CLL, myeloma), chronic infection (HIV, HCV, HBV), autoimmune disease (SLE, Sjögren, RA); neuropathy, nephropathy, purpura → lab. (cryoglobulin)
- **IgA-vasculitis (Henoch-Schonlein purpura)** recurrent infection, purpura, arthralgia, abdominal pain, kidneys (GN) → IgA (elevated 50–70%), kidneys (urine sediment), biopsy skin/kidney if necessary
- **Goodpasture syndrome (anti-GBM disease)** kidneys (GN), alveolitis → lab. (Anti-GBM antibodies), kidneys (urine sediment), if necessary skin/kidney biopsy
- **Hypocomplementemic urticarial vasculitis (anti-C1q vasculitis):** uveitis, urticaria, arthralgia, pneumopathy, abd. pain, kidneys (GN), → lab. (C1q/C3/C4), nephro. (urine sediment)
- **Behçet’s disease:** brainstem, thalamus/basal ganglia affection, optic neuritis, CSF pleocytosis, thrombosis, oral/genital ulcers, (pan-)uveitis, skin lesion, arthritis → laboratory (HLA B51, II-6), rheumatology (pathergy test)
- **Cogan’s syndrome:** Eye redness/pain (interstitial keratitis), hearing impairment/vestibular symptoms, aortitis, recent infection/vaccination → ophtha, ENT (audiometry), neurootology
- **Rheumatoid arthritis:** (hypertrophy) meningitis, (compression) neuropathy, stiffness/polyarthritis, subcutaneous (+ cerebral) rheumatoid nodules, skin (palpable purpura, ulcer), → lab. (RF/CCP), rheumatology (ultrasound, puncture)
- **Sjögren’s syndrome:** Neuro/ganglionopathy, HN, meningitis, myelitis, MS mimic, sicca symptoms, arthralgia/myalgia, skin (palpable purpura), kidneys (TIN) → lab. (cryoglobulin), rheumatology (Schirmer-/Saxontest, ultrasound parotid, biopsy)
- **Sarcoidosis: Cranial nerves**, Pachypleptomoenings, pituitary gland, med. lymphadenopathy, eosinophilia, liquor Glu ↓ Lac↑, → ACE, Vit. D, PTH, Ca+, liquor (siL-2R, lysozyme, CD4+/CD8+-index), CT thorax, pneuomo. (BAL with CD4+/CD8+-Index), PET-CT
- **IgG4-associated disease:** pachympeningitis, orbita, pituitary, neuropathy, periaortitis/arteritis, pancreas, salivary/gland → lab. (IgG4; 30% normal), biopsy of affected organ
- **Deficit of adenosine deaminase-2 (DADA2):** adolescence, similar to c-PAN, skin, immunodeficiency (IgM↓), anaemia/leukocytopenia → genetics
Infectious diseases

- **Mycoplasma pneumoniae**: pneumonia, maculopapillary erythema, high erythrocyte sedimentation rate, haemolytic anaemia → *M. pneumoniae* PCR from TBS/liquor and serology, cold agglutinins
- **Bartonella henselae (cat scratch disease)**: cats, fever, lymphadenopathy, neuroretinitis, → Bartonella henselae serology (low specificity) and PCR (low sensitivity)
- **Thropheryma whipplei** farmers, GI symptoms, arthralgia, lymphadenopathy/B symptoms, myorhythmias/supranuclear gaze palsy → T. whipplei PSA staining and PCR CSF (PCR duodenum if necessary)
- **Rickettsial fever (Rocky Mountain spotted fever)**: N-/M-America, fever, headache, petechial rash, anaemia/thrombocytopenia/DIC → serology
- **Leptospira**: contact with rats/mice/farm animals, field work/farmers, fever, kidney/liver involvement → serology
- **Brucella (Mittelmeierfieber)** raw milk/livestock, meningo-encephalitis, cranial nerve involvement, fever -> serology/SAT in serum and liquor
- **Fungi**: Immunosuppression, aneurysms ICA, CAW), perforator strokes → galactomannan/1,3-beta-D-glucan in serum, BAL; culture from CSF; broad-spectrum PCR for fungi (panfungal PCR) if necessary (Unispital Zürich or Basel)

Other

- **Aβ-related angiitis (ABRA)/CAA-related inflammation (CAA-ri)**: Rapidly progressive dementia, marked leukoencephalopathy with enhancement, microbleeds/superficial siderosis → amyloid staining in biopsy

Vasculitis Mimics

with vascular changes in imaging

- **Atherosclerosis**: large/medium vessels, vas. RF, CHD/peripheral arterial occlusive disease, normal CSF (NPV 80–95%), Asian origin, WARNING: also contrast agent-enhancement in MRI
- **RCVS**: see own chapter
- **Vasospasm**: e.g. drug-associated, SAH-associated
- **Intravascular lymphoma (granulomatous cerebral vasculitis)**: DWI dysfunction without perfusion deficit, lymphadenopathy, B-symptoms, history → (intravascular) lymphoma → flow cytometry in serum and CSF (often unremarkable!), EBV serology and PCR, MRI spinal axis incl. cauda equina
- **Radiogenic Vasculopathy**
- **Fibromuscular dysplasia, Marfan-/Ehlers-Danlos Syndrome**
- **Divry van Bogaert-Syndrom, Sneddon’s Syndrom** Livedo racemosa
- **Moya-Moya disease**

without vascular change in imaging

- **Endocarditis**: fever, CRP-elevation, stigmata, microbleeds → BK 3x2 incl. HACEK group; if no pathogen *Coxiella burnetti* and *Bartonella henselae*; if aseptic (SLE?)
- **Multiple sclerosis/NMOSD/ADEM**
- **Posterior reversible encephalopathy syndrome (PRES)**
- **Lymphoma/glioma**
- **Susac syndrome**: Encephalopathy/CSMZ, sensorineural hearing loss, visual impairment/arterial branch occlusion, corpus callosum/periventricular lesions, leptomeningitis → ophtha. (fluorescence angio, OCT-A), ENT (audiometry)
- **Erdhymy Chester disease**
- **Fabry disease**
- **CADASIL**: *Migraine with atypical aura, CVI/TIAs, Leukoencephalopathy (temporopolar, capsula externa)/lacunae before age 40 years* → *CADASIL* → NOTCH3-gene
- **RVCL (autosomal dominant retinal vasculopathy with cerebral leukodystrophy)**: *Retinopathy CVI/TIA, leukoencephalopathy, migraine, renal insufficiency* → *TREX 1-gene*
- **HERNS (hereditary endotheliopathy with retinopathy, nephropathy, and stroke)**
- **COL4A01-mutation**
Primary CNS Vasculitis – Treatment

Primary CNS vasculitis

- **Prognostically favourable signs**
 - distal vascular segments affected
 - meningeal enhancement
 - little or no ischaemia

- **Methylprednisolone shock therapy**
 - 1000 mg/d for 3–5 days
 - then oral prednisone 1mg/kg bw

- **Response to therapy**

- **Tapering prednisone after 4–6 months**
 - weekly –10 mg to 40 mg/d
 - then weekly –5 mg to 20 mg/d
 - then weekly –2.5 mg to 10 mg/d
 - Then weekly –1 mg to 5 mg/d
 - Leave for 2 weeks, then monthly –1 mg

- **Prognostically unfavourable signs**
 - proximal vessel segments affected
 - multiple ischaemias
 - progression

- **Methylprednisolone shock therapy**
 - 1000 mg/d for 3–5 days
 - then oral prednisone 1 mg/kg bw

- **Cyclophosphamide**
 - 0.7 g/m² every 3–4 weeks for 6 months

- **Response to therapy**

- **Tapering prednisone + establish maintenance therapy for up to 3 years**
 - (e.g. azathioprine)

- **Response to therapy**

- **+ Rituximab**
 - (alternatively as first line therapy instead of Cyclophosphamide)
Strict verification of the indication

- confirmed CNS vasculitis or highest degree of suspicion despite negative biopsy (PACNS, severe inflammatory cerebral amyloid angiopathy ABRA / CAA-ri)
- CNS / PNS involvement in the context of systemic vasculitis, if without specific therapy

Pre-treatment work-up

- Absolute contraindication: allergy, pregnancy / lactation, severe bone marrow depression, acute infection, severe urinary obstruction; relative: treated HIV, chronic Hep B, latent TBC, previous immunosuppressive therapy, etc.
- Declaration of consent from the patient / relatives
- Risk of infertility: conservation of egg cells (not immediately possible) / sperm, eventually GnRH agonist in cooperation with gynecology? Contraception guaranteed up to 6 months after the end of CYC (M and F)
- Clarification of vaccination status / latent infections: HIV, Hep B / C, VZV; HPV in patients with SLE <30Y; possibly TBC (quantiferon test), syphilis, malaria, strongyloides, schistosomiasis, etc. for longer stays / origin from risk area / risk profile
- Vaccinations:
 - Renewal of regular vaccinations; usually pneumococcal vaccination (Prevenar13 once before the start of immunosuppression), if necessary Hep B according to the rapid scheme (d1, d7, d21 or 3rd vaccination after the end of CYC / before further immunosuppression, especially rituximab)
 - Recommendation for influenza vaccination for patients and the surrounding area once a year
 - Live vaccines (MMR, VZV, yellow fever, oral typhoid): only up to 4 weeks before immunosuppression (and from 6 months afterwards!)
 - Vaccination of those close to the patient, if the patient cannot be vaccinated (especially MMR, VZV, pneumococcus, influenza)
- Prophylaxis Pneumocystis jirovecii pneumonia with Trimethoprim f. 3x / week (if intolerance Dapsone or Atovaquone); if necessary, therapy for latent Hep B, TBC, Strongyloides etc. in consultation with Infectious Diseases
- Laboratory: blood count with differential, CRP, transaminases, creatinine, urine status, pregnancy test if necessary, IgG subclasses
- Chest X-ray (TBC)
- ECG (QTc for concomitant medication ondansetron)
- with suspected urination disorder residual urine, due to bladder toxicity from CYC!
- Important: interaction test (especially allopurinol, phenytoin, insulin / antidiabetic drugs, etc.)
- definition of parameters for follow-up assessment (clinical scores including neuropsychology, CSF, MRI / vasculitis sequences, DSA)

Dose / administration

DGN-Scheme for PACNS / ABRA (= Mayo Clinic / Austin scheme)
- Dose: CYC 750 mg/m2 body surface; maximal dose per infusion: 1200 mg
- Time interval: every 4 weeks for a duration of 6 months
- no official scheme for dose adjustment to age and renal function

Cyclops scheme (ANCA-associated vasculitis, if therapy with RTX is not preferred)
- Dose: CYC 15 mg/kg body weight; maximal dose per infusion: 1200 mg
- Administration pulse 1-3 every 2 weeks, then every 3 weeks
- Dose adjustment for age> 60Y and creatinine> 300 umol / l (Appendix)
- Dose adjustment of further doses depending on the leukocyte nadir:
 - Leukocyte nadir 1-2G / l: dose reduction by 40%
 - Leukocyte nadir 2-3G / l: dose reduction by 20%

Controls / further pulse therapies

Controls: Laboratory: Day 10-14: blood count with differential («Leukocyte nadir»), CRP, transaminases, creatinine

For every sequential pulse:
- Anamnesis: infection / cystitic complaints / hematuria; Laboratory: blood count with differential, CRP, creatinine, urine status, pregnancy test?
- Indication for interruption of therapy with cyclophosphamide:
 - Hematology: leukopenia <3000 / µl, granulopenia <2000 / µl, thrombopenia <100,000 / µl; aplastic anemia (distinguished from inflammatory and bleeding anemia)
 - Urology: non-glomerular hematuria / cystitis
- Documentation of the cumulative CYC dose in the diagnosis (increase in carcinogenicity, risk of hemorrhagic cystitis; maximum cumulative dose 20g)

Re-evaluation

- Usually after 6 months aim for remission-maintaining therapy with alternative immunosuppression (e.g. azathioprine, methotrexate, rituximab); Avoid cyclophosphamide therapy > 12 months or cumulative dose of 25g.
Reversible Cerebral Vasokonstriktion Syndrome

Symptoms
- typically thunderclap headache (in about 65%, sometimes with nuchal onset and then spreading to biparietal), lasting minutes to hours, rarely days; often persistence of a milder headache thereafter
- often accompanied by nausea, photophobia, phonophobia
- depending on severity, neurological deficits, epileptic seizures

Typical triggers
- Sex, pressure, coughing, sneezing, urinating, bathing/showering, swimming, laughing, cannabis, cocaine, excess alcohol

Liquor
- Cell count increase and protein increase possible → follow-up after 2 Wochen

MRA/CTA/DSA
- typically: diffuse vasoconstriction with (almost complete); increase can still increase over weeks, reversibility within 12 weeks

Diagnostic criteria
- acute and severe headache, often thunderclap headache with/without focal deficits or epileptic seizures
- monophasic course without new symptoms after >4 weeks course
- segmental vasoconstriction in CTA/MRA/DSA
- no aneurysmal SAH
- liquor normal or cell count <15 or protein <100 mg/dl
- complete or almost complete normalization of vasoconstriction within 12 weeks

RCVS score ≥ 5: PPV 98% NPV 67% sensitivity 94% specificity 86%

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeated or singular thunderclap headache</td>
<td>5</td>
</tr>
<tr>
<td>ICA intracranially affected</td>
<td>-2</td>
</tr>
<tr>
<td>Vasoconstrictive trigger present</td>
<td>3</td>
</tr>
<tr>
<td>Female sex</td>
<td>1</td>
</tr>
<tr>
<td>Subarachnoid haemorrhage</td>
<td>1</td>
</tr>
</tbody>
</table>

Complications
- Convexity SAH (non-aneurysmal)
- ICH
- Ischemias, especially watershed infarcts
- Reversible encephalopathy syndrome
- Brain edema

Therapy
- No established treatment; consider: nimodipine, verapamil, magnesium sulfate
Cerebral venous and sinus thrombosis

- etiological work-up: infectious, coagulation disorder
- **LMWH in therapeutic dosage**: e.g. enoxaparin (1mg/kg bw, 2x/d) (a non-randomized study even showed superiority in respect to efficacy and hemorrhagic complications; especially in patients with congestion hemorrhage)
- **alternatively therapeutic heparinization** (aPTT 1.5-2.5x baseline aPTT) particularly in patients with risk of craniectomy; **switch to OAC in the course of time**
- alternatively Dabigatran can be considered
CAVE: anticoagulation is contraindicated in Behçet's disease

- continue therapeutic heparinization/LMWH also after occurrence of congestion hemorrhages
- IVT or mechanical recanalization in exceptional cases or in studies (e.g. TO-ACT)
- in case of large hemorrhagic infarctions and impending lateral herniation: decompressive craniectomy as early as possible without removal of hematoma or infarcted tissue

- **duration of OAC 6 months** (except in case of progressive thrombosis at follow-up MRI or known thrombophilia)
- usually examination for coagulation disorders after stopping OAC

Therap. heparinization unfractionated heparin

- **complete baseline coagulation status before start of therapeutic heparinization**
- if baseline aPTT is abnormal (normal: 26-37sec) or in case of extensive thrombosis, consult a hematologist and control anti-factor-Xa-activity (aim 0.3-0.6 U/ml)
- usual aPTT aim: 1.5-2.5x baseline aPTT
- strictly check thrombocytes every 2 days during the course of therapy (HIT? => 4Ts score)

The following dosage scheme is for patients at the Inselspital with low bleeding risk. Depending on infarct size, the dosage should be reduced individually.

<table>
<thead>
<tr>
<th>Therapy start</th>
<th>Bolus 60-70 U/kg (max. 5000U)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i.v. continuously 12-15 U/kg/h (max. 1000 U/h)</td>
</tr>
</tbody>
</table>

Dosis adaption in dependence on aPTT and Anti-Xa			
aPTT	Anti-Xa		
< 35 sec	< 0.2 U/ml	Bolus 40 U/kg	
		Increase infusion rate by 3 U/kg/h	Re-evaluation after 6h
36-45 sec	0.2-0.29 U/ml	No bolus, increase infusion rate by 1.5 U/kg/h	Re-evaluation after 6h
46-70 sec	0.3-0.7 U/ml	No change	Re-evaluation after 6h, then 1x/day
71-90 sec	0.71-1.0 U/ml	Reduce infusion rate by 1.5 U/kg/h	Re-evaluation after 6h
> 90 sec	> 1.0 U/ml	Pause infusion for 1 h then reduce by 2-3U/kg/h (if aPTT >200sec pause infusion for 2h)	Re-evaluation after 6h
Secondary prevention

<table>
<thead>
<tr>
<th>Etiology</th>
<th>First stroke</th>
<th>Re-Stroke → always repeat or escalate examinations for etiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>no reason determined (specially no cardiac embolism source, no symptomatic stenosis)</td>
<td>ASS 100mg or Clopidogrel 75mg or ASS+Dipyridamole (Asasantin®) in case of intolerance to the other agents</td>
<td>Change to Clopidogrel 75mg or ASS+Dipyridamole (Asasantin®) in case of intolerance to the other agents</td>
</tr>
<tr>
<td>Initial therapy: in case of TIA or minor stroke within 24h after symptom onset and NIHSS < 4, small infarct:</td>
<td>4 weeks ASS 100mg + Clopidogrel 75mg (loading 600mg) when hemorrhagic transformation is excluded and individual bleeding risk is not elevated</td>
<td></td>
</tr>
<tr>
<td>If additionally CHD, peripheral arterial occlusive disease or asymptomatic carotid artery stenosis:</td>
<td>rivaroxaban (Xarelto®) 2x2.5mg + ASA 100mg/d instead of aspirin monotherapy</td>
<td></td>
</tr>
<tr>
<td>non-valvular AF</td>
<td>- DOAC < occurrence under sufficient or insufficient OAC => change to DOAC</td>
<td>- occurrence under sufficient or insufficient OAC => change to DOAC</td>
</tr>
<tr>
<td></td>
<td>- occurrence under DOAC: change substance class (Xa ↔ IIa) -consider atrial appendage closure</td>
<td>- occurrence under DOAC: change substance class (Xa ↔ IIa) -consider atrial appendage closure</td>
</tr>
<tr>
<td>valvular AF (Def: AF with rheumatic mitral stenosis)</td>
<td>OAC INR 2-3</td>
<td>1. optimize dosage if necessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. consider OAC INR 2.5-3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. consider OAC + ASS 100mg</td>
</tr>
<tr>
<td>symptomatic extracranial carotid stenosis</td>
<td>>50% degree of stenosis: CEA/CAS < 50% with radiologically proven plaque rupture: individual + statin at high dose</td>
<td>< 50% stenosis with radiologically proven plaque rupture: consider CEA/CAS</td>
</tr>
<tr>
<td>symptomatic extracranial vertebral artery stenosis</td>
<td>ASS 100mg + 4 weeks Clopidogrel 75mg + statin at high dose Contralateral hypoplasia: consider stenting</td>
<td>consider stenting</td>
</tr>
<tr>
<td>symptomatic intracranial stenosis</td>
<td>ASS 100mg + Clopidogrel 75mg for 3 months, then monotherapy + statin at high dose</td>
<td>ASS 100mg + Clopidogrel 75mg (duration individually) + statin at high dose + consider stenting</td>
</tr>
</tbody>
</table>

Instructions for the initiation of antiplatelet aggregation therapy after ischemic stroke

- in case of conservative treatment: immediately
- after mechanical EVT: usually immediately with loading (250-500mg ASS or 300-600mg Clopidogrel)
- after IVT, Bridging, Urokinase i.a.: after exclusion of bleeding in 24h control imaging
- in case of imminent space-occupying brain edema neurosurgeons should be involved immediately. If a potential craniectomy is considered, no administration of antplatelets (see separate guidelines).

Instructions for the earliest initiation of (D)OAC after ischemic stroke

- CAVE: Exclude hemorrhagic transformation and endocarditis (=contraindications)
- TIA/smallest infarctions: immediate initiation
- Small infarction (= <40ml): after 3d (with BG involvement 6d)
- Middle-sized infarction (= 40-100ml): after 6d (with BG involvement 9d) after exclusion of hemorrhage
- Large infarction (= >100ml): after 12d (with BG involvement 15d) after exclusion of hemorrhage
- usually no intermediate antiplatelet therapy until start of (D)OAC
- in case of medication switch: consider transient „dual therapy“ depending on the delayed loss of therapeutic effect depending on \(T_{1/2} \)
- highly embolic source of embolism (e.g. mechanical heart valve): consider immediate initiation of a therapeutic heparinization except if infarction is very large or hemorrhagic
- in case of hemorrhagic transformation, initiation usually after 2 weeks (following CT scan)

\(\approx 40\text{ml} \)

\(\approx 100\text{ml} \)
Secondary prevention in special situations

Myocardial infarction (sub)acute

- consider DOAC application for 3 months also without thrombus finding, esp. with embolic infarct distribution
- stenting in patients with (D)OAC indication → (D)OAC + clopidogrel (consider DOAC low dose in large infarctions), triple therapy in acute stroke only in exceptional cases (esp. in-stent-thrombosis, stent main stem)
 If AF is indication for (D)OAC: consider atrial appendage closure, afterwards only dual antiplatelet therapy
 STEMI: Coro immediately; NSTEMI: Coro as soon as clopidogrel + ASS or (D)OAC + clopidogrel is possible (depending on indication); Coro immediately in case of severe arrhythmia, hemodynamic instability, persistent pain

Detection of AF or atrial thrombus in patients taking aspirin + clopidogrel due to coronary stent

DOAC long-term therapy + usually 1 year clopidogrel; during dual therapy consider (transient) DOAC low dose in dependence on infarct size

Intracardial thrombus

Ventricular: (D)OAC for 3 months, then control TEE and consider change to antiplatelet therapy
Atrial appendage thrombus: DOAC therapy life long also without proven AF

Symptomatic stenosis

see page 18

Coronary heart disease or peripheral arterial occlusive disease + high risk for ischemic events

Consider Rivaroxaban 2x2.5mg + ASS 100mg/d

Severe heart failure with severe hypokinesia/akinesia

No DOAC except in case of intra cardiac thrombus

Infectious Endocarditis

No antiplatelet therapy/heparin/(D)OAC; if valvular replacement is indicated, early operation seems to be benefici-al

Pulmonary embolism

DOAC, start depends on infarct size; duration: 6 months in case of univocal provocative factors (surgery, immobilization >48h, plaster cast on leg), otherwise long-term therapy;
PFO occlusion in case of long-term DOAC therapy not indicated, otherwise PFO closure also with low RoPE score

Paraneoplastic Coagulopathy

LMWH therapeutic dosage (2x/d, not 1x/d) or Edoxaban or Rivaroxaban
Silent strokes

- most frequent incidental finding in CT/MRI (no TIA or stroke suspicious episodes in medical history)
- prevalence depending on cardiovascular risk profile and age (~30% in people aged 70)
- increased stroke risk and severity, risk for dementia, depression and subclinical deficits

Definition by MRI
- acute or subacute ischemia (see A, p.e. acute diffusion lesion with signal decrease in ADC and without symptoms and without otherwise explanation
- chronic ischemia:
 - T2/FLAIR hyperintense lesion, T1 hypointense lesion non-lacunar (see B)
 - cerebellar or supratentorial cortical, or
 - supratentorial subcortical >3mm with affection of deep gray matter and without otherwise explanation
 - lacunar lesion (see C): ≥3mm, not corresponding to enlarged perivascular space

Definition by CT
- cortical defect zone or lacunar lesion

Diagnostics
- search for risk factors
- complete vessel imaging if not already done with initial imaging
- 3x 7d ECG
- TTE/TEE

Therapy
- risk factor treatment
- ASS with consideration of risk/benefit value
- treatment of blood pressure equal to secondary prevention guidelines,
- consider treatment of stenosis >60% of the depending vessel after consideration of risk/benefit value, in case of
 - acute ischemia, or
 - multiple chronic ischemia in the corresponding vessel territory
- indicated in strokes with evidence of non-valvular AF
- in cerebral venous thrombosis and dissection: phenprocoumon/acenocoumarol or dabigatran
- not recommended in anti-phospholipid-antibody syndrome or valvular AF (valvular: rheumatic mitral stenosis)
- in case of known elevated GIT bleeding risk: preferable lower doses of DOAK especially in patients > 75 years

<table>
<thead>
<tr>
<th>Factor II-inhibitor</th>
<th>Factor X-inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dabigatran (Pradaxa®)</td>
<td>Apixaban (Eliquis®)</td>
</tr>
<tr>
<td></td>
<td>Rivaroxaban (Xarelto®)</td>
</tr>
<tr>
<td></td>
<td>Edoxaban (Lixiana®)</td>
</tr>
</tbody>
</table>

General information
- CI: Child-Pugh A-C
- CI: Child-Pugh C
- CI: Child-Pugh B+C
- CI: Child-Pugh C

Dose if CrCl ≥ 50 ml/min
- 2 x 150mg (≥ 80 years: 2x110mg)
- 2 x 5mg (2 x 2.5mg if two of the following criteria are fulfilled: ≥80 years, ≤60kg, creatinine ≥ 133 µmol/l)
- 1 x 20mg
- 1 x 60mg (1 x 30mg if bw < 60kg)

Dose if CrCl 30-49 ml/min
- 2 x 110mg
- 1 x 15mg
- 1 x 15mg, control of plasma coagulation recommended
- 1 x 30mg

Dose if CrCl 15-29 ml/min
- contraindicated
- 1 x 15mg
- 1 x 30mg

Dose if CrCl <15 ml/min
- contraindicated
- not recommended
- contraindicated
- not recommended

Inductors (effect diminished)
- Rifampicin, St John's wort, carbamazepine
- Rifampicin (edoxaban: dosage reduction not necessary), phenytoin, carbamazepine, phenobarbital, St John's wort

Inhibitors (effect enhanced)
- Verapamil, ketoconazole, itraconazole, voriconazole, posaconazole
- HIV-protease inhibitors

T½
- 12-17h
- 9-14h
- 5-9h
- 10-14h

Set off time before surgery
- (in agreement with surgeon)
- 24h up to 72h in case of large operations
- 48h in case of high bleeding risk, renal failure, elderly patients
- 24h before 48h in case of high bleeding risk, renal failure, elderly patients
Risk factors

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>Blood pressure >140/90 mmHg</td>
</tr>
<tr>
<td>Lack of physical activity</td>
<td><150 min/week moderate or <75 min intensive exercise</td>
</tr>
<tr>
<td>Overweight</td>
<td>BMI >25, abdominal girth >m:94cm/f:88 cm</td>
</tr>
<tr>
<td>Unhealthy diet</td>
<td></td>
</tr>
<tr>
<td>Psychosocial stress</td>
<td></td>
</tr>
<tr>
<td>Alcohol abuse</td>
<td>>30 drinks/month; f>15g/d, m>30g/d</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Fasting blood sugar ≥7mmol/l, HbA1c ≥ 6.5%; impaired fasting glucose: 5.6-6.9mmol/l</td>
</tr>
<tr>
<td>Family history</td>
<td>(m <55 years, f<65 years)</td>
</tr>
<tr>
<td>Pre-stroke/TIA</td>
<td></td>
</tr>
<tr>
<td>Sleep related breathing disorders</td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td></td>
</tr>
<tr>
<td>Migraine with aura</td>
<td>(at least 2 auras in a lifetime)</td>
</tr>
<tr>
<td>Pregnancy</td>
<td></td>
</tr>
<tr>
<td>Atrial tachycardia</td>
<td></td>
</tr>
<tr>
<td>Tachycardia at rest</td>
<td></td>
</tr>
<tr>
<td>Increased variability in blood pressure</td>
<td></td>
</tr>
<tr>
<td>Cardiac wall motion abnormalities</td>
<td></td>
</tr>
<tr>
<td>Contraception</td>
<td></td>
</tr>
<tr>
<td>Hormone replacement therapy</td>
<td></td>
</tr>
<tr>
<td>Acute infection</td>
<td>(esp. influenza)</td>
</tr>
<tr>
<td>Chronic renal failure</td>
<td></td>
</tr>
</tbody>
</table>

Risk stratification

<table>
<thead>
<tr>
<th>Risk</th>
<th>Criteria</th>
<th>SCORE risk chart</th>
</tr>
</thead>
</table>
| Very high risk | • Previous vascular event: cerebral stroke, myocardial infarction, symptomatic peripheral arterial occlusive disease
• Detection of atherosclerotic plaques, silent ischemia
• Previous revascularization of an artery
• Diabetic patients with end-organ damage (e.g., microalbuminuria) or ≥three major risk factors or disease duration >20 years
• Severe renal insufficiency (GFR<30 ml/min./m2)
• Familial dyslipidemia with a risk factor | >10%/10 years |
| High risk | • 1 poorly controlled risk factor (e.g., LDL cholesterol >4 mmol/L, triclycerides >8 mmol/L, or BP ≥180/110 mmHg)
• Familial dyslipidemia without poorly controlled risk factor
• Diabetic patients ≥10 years of disease duration, without end-organ damage and without additional risk factors
• Moderate renal insufficiency (GFR 30–59 ml/min./m2) | 5–10%/10 years |
| Moderate risk | • Young diabetics (if type 1 diabetes <35 years, if type 2 diabetes <50 years) with a duration of disease <10 years, without other risk factors | 1–5%/10 years |
| Low risk | No criteria met | <1%/10 years |
Stepwise drug treatment

1. Monotherapy in: >80 yrs. u/o frail patients, low vascular risk, AH grade 1, high normal blood pressure and high/very high risk
2. Otherwise dual combination therapy, 1st choice ACE inhibitor/sartan+calcium channel blocker or ACE inhibitor/sartan+diuretic; in case of beta-blocker indication (angina pectoris, post myocardial infarction, heart failure, rhythm control): combination of beta-blocker + other antihypertensive (ACE inhibitor, sartan, calcium antagonist, diuretic)
3. Triple combination therapy (sartan + diuretic + calcium antagonist): if max. dose of dual combination therapy is insufficiently effective
4. Spironolactone in the absence of contraindications (including GFR <45 mL/min., potassium >4.5 mmol/L) and insufficiently effective triple combination therapy
5. Alternative-supplementary classes of hypertensives (e.g., alpha-1 blocker) in case of insufficient efficacy of the above-mentioned combinations of antihypertensives, or intolerance

Notes

- Blood pressure variability significantly increases stroke risk → calcium antagonists
- Caution is needed in the case of vascular occlusion and/or high-grade stenoses (if necessary, higher target values/slower decrease)
- All antihypertensives can be combined in any way, except sartans and ACE inhibitors
- GFR <30ml/min.: thiazide diuretics are not effective

Secondary arterial hypertension

Look for in the case of resistance to therapy (especially in patient <75 years, normal weight, healthy lifestyle, absence of diabetes mellitus and/or organ damage due to vascular risk factors)

- Causes: sleep-associated respiratory failure, primary hyperaldosteronism, chronic renal failure, pheochromocytoma, fibromuscular dysplasia, coarctation of the aorta, Cushing’s syndrome, Hyperparathyroidism, medications (oral contraceptives, sympathomimetic mucosal decongestant therapy, NSAIDs, cyclosporine, erythropoietin, chronic steroid therapy, chemotherapeutic agents), drugs (cocaine, amphetamines, anabolic steroids), other substances (licorice)

<table>
<thead>
<tr>
<th>Systolic</th>
<th>Diastolic</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td><120</td>
<td><80</td>
</tr>
<tr>
<td>Normal</td>
<td>120–129</td>
<td>80–84</td>
</tr>
<tr>
<td>High-normal</td>
<td>130–139</td>
<td>85–89</td>
</tr>
<tr>
<td>AH grade 1</td>
<td>140–159</td>
<td>90–99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AH grade 2</td>
<td>160–179</td>
<td>100–109</td>
</tr>
<tr>
<td>AH grade 3</td>
<td>≥ 180</td>
<td>≥ 110</td>
</tr>
<tr>
<td>Isolated</td>
<td>> 140</td>
<td>and < 90</td>
</tr>
</tbody>
</table>
Physical inactivity

Physical activity has a beneficial effect on vascular risk factors, has antidepressant effects and promotes smoking cessation

Recommendation: at least 20–60 min. exercise on 3–5/days per week of at least moderate intensity (e.g. walking, jogging, swimming, cycling)
(specific recommendation for high blood pressure: 60–90 min./week, weight reduction: 225–420 min./week, diabetes: 150 min./week)

- 8% of all deaths are related to physical inactivity
- 28% reduction in relative risk of stroke, myocardial infarction and vascular fatality with physical activity (compared to 22% with ASA, 21% with statins, and 21% with antihypertensives)
- Stroke risk reduced by 30% with >40min of moderate/high intensity activity 3–4x/week

Dyslipidemia

Important notes

The treatment of dyslipidemia and the success of the scheme below requires careful pre-selection of patients. NO mandatory statin therapy is needed, for example, in patients with dissection, confirmed paradoxical embolization, iatrogenic strokes, etc. In these cases, the indication would be with the criteria for primary prevention (not listed here).

Stepwise therapy

1. Choice of statin, increasing dose as long as target value not reached and up to highest tolerated dose.

 If target value is not reached:
 - Statin+ezetimib (Inegy®) and if necessary PCSK9 inhibitors, especially in the case of very high vascular risk
 - If necessary, anion exchange resin
 - If necessary, fibrates in hypertriglyceridemia

 In cases of statin intolerance: switch to another statin, if necessary, ezetimib (Inegy®) +/- PCSK9 inhibitors
 - Strength: rosuvastatin (Crestor®) > atorvastatin (Atorva®, Atorvastatin®, Sortis®) > simvastatin (Simcora®, Simvasin®, simvastatin®, Zocor®) > pravastatin (Pravastatin®, Mevalotin®) > fluvastatin (Fluvastatin®, Lescol®)

General

- For every 1 mmol/L increase in total cholesterol, relative risk of ischaemic cerebral infarction increases by 25%
- In cerebral infarction associated with atheromatosis, achievement of a target LDL cholesterol <1.8 mmol/L shows a better prognosis than a target of 2.3–2.8 mmol/L
- For symptomatic/multiple stenoses/significant atheromatosis of the aorta: usually a high dosage (e.g. atorvastatin 80 mg), target LDL value: < 1.4 mmol/L
- PCSK9 inhibitors: evolocumab (Repatha®), alirocumab (Praluent®)
- Statin-induced immune-mediated necrotizing myopathy, 5-year incidence on atorvastatin 40 mg/d: 5/10 000

Target values

<table>
<thead>
<tr>
<th>Vascular risk: (see p.28)</th>
<th>Low</th>
<th>Moderate</th>
<th>High or arteriosclerosis detected</th>
<th>Very high or symptomatic stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL</td>
<td>Target <3mmol/L</td>
<td>Target <2.6mmol/L</td>
<td>Reduction of baseline value by >50% Target <1.8 mmol/L</td>
<td>Reduction of baseline value by >50%. Target <1.4 mmol/L</td>
</tr>
<tr>
<td>Non-HDL cholesterol (TG-HDL)</td>
<td>Target <3.4mmol/L</td>
<td>Target <2.6mmol/L</td>
<td>Target <2.2mmol/L</td>
<td></td>
</tr>
<tr>
<td>TG</td>
<td>Target <1.7 mmol/L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diabetes mellitus

General

- Recommended target value of HbA1c <7%
- Avoid hypoglycaemia, as it increases vascular risk
- Target value of blood pressure in patients with diabetes: <65 yr <130/80 mmHg, >65 yr <140/80 mmHg
- In case of high/very high risk (see below): aspirin 100 mg/day possibly already part of primary prophylaxis

Risk stratification in patients with diabetes

Very high risk: Diabetes mellitus + vascular clinical event or organ damage that has already occurred, or >3 other vascular risk factors, or type 1 diabetes mellitus with a duration of >20 years

High risk: Duration of disease >10 years without organ damage but with at least one additional vascular risk factor

Moderate risk: Young patient with diabetes mellitus type 1, and <50 yr for patient with diabetes mellitus type 2, with short duration of disease (<10 years) and no other vascular risk factors

Medications

- Choices in patients with type 2 diabetes mellitus:
 - 1st choice metformin
 - 2nd choice SGLT2 inhibitor (e.g. empagliflozin (Jardiance©, Canagliflozin, Invokana©), dapagliflozin (Forxiga©)) and GLP-1 receptor antagonists (e.g. liraglutid (Victoza©), semaglutide (Ozempic©), dulaglutid (Trulicity©))

 - In patients with atheromatosis or high vascular risk: 1st choice metformin; low-threshold addition of an SGLT2 inhibitor or GLP-1 receptor antagonist (lower risk of vascular events, mortality)

- Metformin
 - GFR <45 mL/min.: no restart; if already prescribed → dose reduction (up to 500mg/day) with regular GFR checks (2–3x/year)
 - GFR <30 mL/min: stop metformin
 - Do not start with metformin in a patient with vit. B12 deficiency (metformin inhibits the absorption of vit. B12)

- SGLT2 inhibitors
 - Use only if GFR>45ml/min
 - Side effects: urogenital infections are common. Data limited for age >75 yr

- GLP-1 receptor antagonists can be used if GFR<30ml/min., but only when BMI >28 kg/m²

Sleep apnoea syndrome

- Screening with respiratory polygraphiy or Apnea link
- Treatment with CPAP/APAP/ASV indicated with
 1. AHI ≥ 5/h in symptomatic SAS (preexisting sleepiness)
 2. AHI ≥ 30/h also in asymptomatic SAS
 3. AHI 5–29/h + relevant general medical indications (e.g. severe heart failure, untreatable arterial hypertension)
Recommendation: consumption of fresh fruits, vegetables (the more the better, i.e. ≥3 servings/day).

- ≥5 servings: risk reduction 26% (RR 0.74; 95% CI 0.69–0.79; p <0.0001). 3–5 servings: risk reduction 11% (RR, 0.89; 95% CI 0.83–0.97; p = 0.005).

- Beneficial effect of Mediterranean diet (consumption of legumes, whole grains, low-fat dairy products, fish, unsaturated fatty acids): risk reduction 44%

- Beneficial effect of DASH diet (low-fat diet rich in minerals, vitamins and whole grains): risk reduction 25%

- **Salt consumption** <5 g/day; reduction by 1 teaspoon/day: risk reduction 30%

- Consumption of coffee has a beneficial effect (U-shaped curve for association with risk of stroke, max. 3–4 cups/day associated with 17% risk reduction)

- Consumption of tea (green and black) has a beneficial effect (risk reduction of 13% with intake of 3 cups/day)

- Consumption of chocolate has a beneficial effect

- Max. alcohol consumption <14 units/week for men and <8 units for women (1 unit=250 ml beer or 125 ml wine); avoid binge drinking.

- Avoid drinks with refined sweeteners

- Unfavourable effect of saturated fatty acids

- Questionable or very small unfavourable effect of red meat

Adapted according to GBD 2017 Diet Collaborators. Lancet
Body weight

- Target BMI <20–25kg/m²
- Target abdominal circumference: men: < 94 cm, women: < 80 cm
- Stroke mortality increases by 40% per 5 kg/m² increase in BMI

Smoking

- Smoking cessation: medical counselling, self-help interventions, group behavioural therapy, telephone counselling, medications (e.g., bupropion, clonidine) are effective
- For addresses of advisory centres see www.stop-tabak.ch
Non-traumatic intracerebral haemorrhage (ICH)

Interdisciplinary Management
Conservative Management → Neurology
OP-indication → Neurosurgery
- Evaluation of therapy requirements at an early stage
- Positioning: upper body elevation usually at least 30°, otherwise free mobilization
- Discontinuation: antiplatelet agents, (D)OACs and heparins

A B C D Care

A Reverse Anticoagulation
Begin <15 minutes after diagnosis on CT/MRI
See next page for the scheme

B Reduce blood pressure if >160/90mmHg
Begin <15 minutes after diagnosis on CT/MRI

Blood pressure target ≤ 140/90mmHg within 1h after admission
Important:
- a) Avoid fluctuations of >20% → early perfusor
- b) Avoid reduction of >60mmHg in the first hour
- Medication:
 1. Choice: Uradipil (Ebrantil®) 5–10 mg i.v. bolus-wise, 5–40 mg/h via perfusor
 2. Choice: Labetalol (Trandate®) 20–80 mg i.v. bolus-wise, 1–2 mg/min via perfusor, maximum 2.4 g/day

C NCH-intervention
Rapid evaluation by neurosurgeon regarding indication for surgery (<30 minutes after diagnosis on CT/MRI)

- Individual decision on haematoma evacuation in non-basal ganglia haemorrhage with GCS 9-13.
- No indication for surgery in case of basal ganglia hemorrhage, if necessary include in SWITCH study
- Ventricular drainage in the case of cerebrospinal fluid circulation disorder

D Diagnostics
See clarification algorithm

- Blood pressure measurement on an outpatient basis <130/90 mmHg; instruct patients in self-measurement and documentation (bring findings to consultation)
- Evaluation/restart of antithrombotics: consultation (see scheme)

<table>
<thead>
<tr>
<th>3-month check-up</th>
<th>12-month check-up</th>
<th>Annual follow-ups</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI if not performed in acute phase</td>
<td>Incl. MRI (registration "ICH/microangiopathy")</td>
<td>only for selected patients</td>
</tr>
<tr>
<td></td>
<td></td>
<td>under OAC according to ICH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>high cerebrovascular risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Individual indications for imaging</td>
</tr>
</tbody>
</table>
Always: stop antiplatelet therapy/(D)OAC/heparines

<table>
<thead>
<tr>
<th>Anticoagulant</th>
<th>Therapy</th>
<th>Note</th>
</tr>
</thead>
</table>
| Alteplase | See also page 14
→ Fibigrinogen (Haemocomplettan P) or Prothrombin complex concentrate (involve haematology)
→ Tranexamic acid (Tranexam OrPha) i.v. 1000 mg over 10 min
→ blood pressure target ≤ 140/90 mmHg | See page 14 |
| Phenprocoumon | Prothrombin complex concentrate: 2400 IE (if < 50 kg body weight: 30 IE/kg body weight) + vitamin K: if INR ≥ 1.5 → 10 mg i.v., then dosage in dependence on INR; onset of drug effect approx. 4-6h | Repeat prothrombin complex concentrate in case of insufficient INR decrease after 15min. Then INR at least 1x/d (and eventually repeat vitamin K) |
| Heparin UFH | Protamine sulfate:
If Heparin was stopped ≤1h or anti-Xa activity ≥ 0.35: 1000 E i.v. (1ml) per 1000 E heparin given during the last 3 hours (max. 5000E);
If Heparin was stopped 1–3h before or anti-Xa acitivity 0.15-0.35: 500 E i.v. (0.5ml) per 1000 E heparine given during the last 3 hours (max. 5000E) | Involve haematology; beware of contraindications! |
| Heparin LMWH | Protamine sulfate:
Last therapeutic dosage given ≤8h or anti-Xa acitivity ≥ 0.5: 5000 E protamine sulfate
Last therapeutic dosage given 8-12h or anti-Xa acitivity 0.3-0.5: 2500 E protamine sulfate | Involve haematology; beware of contraindications! |
| Xa-Inhibitors | No evidence-based therapy
Prothrombin complex concentrate (see under Phenprocoumon) as option | measure anti-Xa of Apixaban/Rivaroxaban/Edoxaban before and after application |
| Dabigatran | No evidence-based therapy
Idarucizumab (2x2.5 g) as specific antidot available | |
| Antiplatelet | No specific treatment (thrombocyte infusion potentially harmful) | |

Note: NO efficacy in studies: steroids, tranexamic acid, activated Factor VIIa.
1) **Primary imaging in ED with CT or MRI** always with **angiography** – suspicion for macrovascular bleeding cause (AVM, aneurysm, bleeding in SVT, etc.)?

2) **Indication for invasive Angio** (IADSA): interdisciplinary decision neuroradiology, neurosurgery, neurology, structured decision pathway is helpful (see below)

3) **SVD – Small vessel disease**: signs of microangiopathy in CT/MRI (leucencephalopathy, microbleeds)

4) **Follow-up imaging after 24h for evaluation of hematoma expansion** (prognostic marker and quality control)

Re-initiation of anticoagulatory medication after ICH

- **Heparin for prevention of thrombosis**: LMWH (e.g. Enoxaparin) after follow-up imaging after 24h or pneumatic compression stockings
- **Antiplatelet monotherapy** ASS/Clopidogrel: depending on individual risk after follow-up imaging earliest 7d after ICH
- **Phenprocoumon for mechanical heart valve**: earliest 7d after ICH in case of high embolic risk, otherwise 14d
- **(D)OAC for atrial fibrillation**: individual decision, consider atrial appendage closure

Longterm prophylaxis

Treatment of blood pressure (aiml <140mmHg systolic), outpatient follow-up after 3 months
Microbleeds

- differential diagnosis of incidental “microbleeds” findings in SWI: thrombus, metastasis, microangiopathy, vasculitis, cerebral amyloid angiopathy, rub off metallic waves
- most frequent origin: microangiopathy
- consider always cerebral amyloid angiopathy (s. below)

Microbleeds & Antiplatelet therapy/(D)OAC
- Effect of secondary prophylaxis with antiplatelet therapy and (D)OAC outweights bleeding risk
- Bleeding risk and risk for ischemia rises with number of microbleeds, but risk for ischemia remains higher

Cerebral amyloid angiopathy (CAA)

- Progressive dementia
- Frequently one or multiple small ischemic strokes or microbleeds in follow up images

MRI: modified Boston criteria for age >55 y

Possible CAA
- Singular bleeding lobar, cortical or cortical-subcortical localisation (cerebellar allowed)
- or focal or disseminated superficial siderosis
- exclusion of other causes of ICB

Probable CAA
- multiple bleedings lobar, cortical or cortical-subcortical loacalosation (cerebellar allowed)
- or singular, cortical-subcortical bleeding and focal or disseminated superficial siderosis
- exclusion of other causes of ICB

Definitive CAA
- Autoptic proven

CT: Edinburgh criteria
- Finger-like projections (FLP): elongated extension from the hematoma (longer than wider)
- Subarachnoid hemorrhage (SAH): extension of the bleeding in subarachnoid space

Amyloid angiopathy & Antiplatelet therapy/(D)OAC
- with probable CAA: stop antiplatelet therapy/(D)OAC
- consider atrial appendage closure in case of atrial fibrillation
- in case of mehanical waves individual decision (reports of low embolic risk without OAC in some types of waves)
CAA-related Inflammation (CAA-ri)

Diagnostic criteria

<table>
<thead>
<tr>
<th>Possible CAA-ri (if all 5 criteria are met)</th>
<th>Likely CAA-ri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Age ≥ 40 years</td>
<td>1. Age ≥ 40 Jahre</td>
</tr>
<tr>
<td>2. Presence of at least one clinical symptom not directly associated with ICH, consisting of headache, impaired consciousness, behavioural abnormalities, focal neurological symptoms, epileptic seizures</td>
<td>2. Presence of at least one clinical symptom not directly associated with ICH, consisting of headache, impaired consciousness, behavioural abnormalities, focal neurological symptoms, epileptic seizures</td>
</tr>
<tr>
<td>3. MRI showing evidence of hyperintensities in the medullary canal extending to the surrounding subcortical medullary canal</td>
<td>3. MRI demonstrating unifocal or multifocal hyperintensities in the medullary (corticosubcortical or deep medullary) bed that are asymmetric and extend to the surrounding subcortical medullary bed (and the asymmetry is not a result of old ICH)</td>
</tr>
<tr>
<td>4. Presence of at least one of the following corticosubcortical haemorrhages: cerebral macrohaemorrhage, cerebral microhaemorrhage, cortical superficial siderosis</td>
<td>4. Presence of at least one of the following corticosubcortical haemorrhages: cerebral macrohaemorrhage, cerebral microhaemorrhage, cortical superficial siderosis</td>
</tr>
<tr>
<td>5. Exclusion of neoplasia, infection, or other genesis.</td>
<td>5. Exclusion of neoplasia, infection, or other genesis</td>
</tr>
</tbody>
</table>

Therapy

1. **Steroid therapy**
 - High-dose therapy with solumedrol 1g/d for 3d, followed by
 - Steroid maintenance therapy prednisolone 1mg/kg bw (under gastric and osteoporosis protection).
2. **Additional immunosuppression, insufficient evidence as to which is preferable**
 - Cyclophosphamide
 - Mycophenolate mofetil
 - Rituximab
3. **Early control with ICH consultant after 4–6 weeks incl. MRI**

Right occipital asymmetric FLAIR hyperintensity + microbleeds | 2 months after steroid therapy
Motor areas
Speech areas
Visual areas
Sensory areas

Functional systems
Close your eyes

He’s a chip off the old block.

Harm set, harm get.

HUCKLEBERRY

BASEBALL PLAYER
Glasgow Coma Scale

| Eye opening response | 4 Spontaneously
| | 3 To speech
| | 2 To pain
| | 1 No response
| Best verbal response | 5 Oriented to time, place, and person
| | 4 Confused
| | 3 Inappropriate words
| | 2 Incomprehensible sounds
| | 1 No response
| Best motor response | 6 Obey commands
| | 5 Moves to localized pain
| | 4 Flexion withdrawal from pain
| | 3 Abnormal flexion (decorticate)
| | 2 Abnormal extension (decerebrate)
| | 1 No response

CHA\textsubscript{2}DS\textsubscript{2}-VASc-Score (stroke risk with atrial f.)

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Points</th>
<th>(N)OACIF</th>
<th>Sum</th>
<th>Risk/year taking Aspirin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure</td>
<td>1</td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1</td>
<td></td>
<td>2</td>
<td>2.2%</td>
</tr>
<tr>
<td>Age > 75</td>
<td>2</td>
<td></td>
<td>3</td>
<td>3.2%</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1</td>
<td></td>
<td>4</td>
<td>4.8%</td>
</tr>
<tr>
<td>Stroke/TIA/thromboembolism</td>
<td>2</td>
<td></td>
<td>5</td>
<td>7.2%</td>
</tr>
<tr>
<td>Vascular disease (heart, peripheral)</td>
<td>1</td>
<td></td>
<td>6</td>
<td>9.2%</td>
</tr>
<tr>
<td>Age 65-74 years</td>
<td>1</td>
<td></td>
<td>7</td>
<td>11.2%</td>
</tr>
<tr>
<td>Woman</td>
<td>1</td>
<td></td>
<td>9</td>
<td>12.2%</td>
</tr>
</tbody>
</table>

Modified Rankin Scale (mRS)

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No symptoms at all</td>
</tr>
<tr>
<td>1</td>
<td>No significant disability despite symptoms; able to carry out all usual duties and activities</td>
</tr>
<tr>
<td>2</td>
<td>Slight disability; unable to carry out all previous activities, but able to look after own affairs</td>
</tr>
<tr>
<td>3</td>
<td>Moderate disability, requiring some help, but able to walk without assistance</td>
</tr>
<tr>
<td>4</td>
<td>Moderately severe disability; unable to walk without assistance and unable to attend own bodily needs</td>
</tr>
<tr>
<td>5</td>
<td>Severe disability; bedridden, incontinent and requiring constant nursing care and attention</td>
</tr>
<tr>
<td>6</td>
<td>Dead</td>
</tr>
</tbody>
</table>
NIH Stroke Scale

<table>
<thead>
<tr>
<th>Points</th>
<th>Category</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| **Level of consciousness** | | 0 Alert
1 Not alert, but arousable by minor stimulation
2 Not alert, requires repeated stimulation to attend. Or, obtunded and requires painful stimuli to make movements
3 Makes only reflexive posturing movements to repeated painful stimuli. Or, they are totally unresponsive |
| **Orientation** | anarthria, intubation=1, coma=2 | Ask the current month and the patient’s age.
0 Answered both questions correctly
1 Answered one correctly
2 Answered neither question correctly or aphasia |
| **Commands** | | Ask the patient to open/close the eyes and make a fist/relax the non-paretic hand.
0 Performed both correctly
1 Performed one correctly
2 Performed neither correctly |
| **Best gaze** | uncooperative=1, coma=2 | 0 Normal
1 Partial gaze palsy = Conjugate gaze deviation that can be overcome with voluntary or reflexive activity
2 Forced deviation |
| **Visual Fields** | not evaluable=0, neglect=1, coma=3, in case of aphasia, evaluate reaction | 0 No visual loss
1 Partial hemianopia
2 Complete hemianopia
3 Bilateral hemianopia |
| **Facial palsy** | coma=3 | 0 Normal
1 Minor paralysis (flattened nasolabial fold or mild asymmetry while smiling)
2 Partial paralysis (total or near total paralysis of lower face)
3 Complete paralysis of upper and lower face |
| **Motor arm** | coma=4 | 0 No drift, remains in position for 10 sec. after an initial dip
1 Jerks or drifts to an intermediate position without encountering support before the full 10 sec.
2 Some effort against gravity. Drifts down before 10 sec.
3 No effort against gravity and the arm falls
4 No voluntary movement |
| **Motor leg** | coma=4 | 0 No drift, remains in position for 5 sec. after an initial dip
1 Jerks or drifts to an intermediate position without encountering support before the full 5 sec.
2 Some effort against gravity. Drifts down before 5 sec.
3 No effort against gravity and the leg falls
4 No voluntary movement |
<table>
<thead>
<tr>
<th>Points</th>
<th>Category</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| | Limb ataxia | 0 Absent
coma, aphasia, paralyzed=0
1 Present in one limb
2 Present in two limbs |
| | Sensory | 0 Normal
bilateral loss=2, coma=2
aphasia=rather 1
1 Mild to moderate sensory loss, patient feels asymmetry between the two sides but is still aware of being touched
2 Severe or total sensory loss, patient is not aware of being touched on the face, arm, and leg |
| | Best language | 0 No aphasia
Intubated patients should be asked to write, coma=3
1 Mild to moderate aphasia; some obvious loss of fluency or facility of comprehension without significant limitation on ideas expressed or form of expression
2 Severe aphasia; all communication is fragmentary; great need for inference, questioning, and guessing by the examiner
3 Mute or global aphasia; globally aphasic patients have no usable speech or auditory comprehension |
| | Dysarthria | 0 Normal
coma=2
1 Mild to moderate dysarthria; patient can still be understood
2 Severe dysarthria; patients are either mute or speech is so slurred they cannot be understood out of proportion to any dysphasia that is present |
| | Extinction and inattention | 0 Absence of neglect
coma=2
1 Inattention to one modality only (visual, tactile, auditory, spatial, or personal inattention)
2 Profound hemi-inattention or extinction to more than one modality; does not recognize own hand or orients only to one side of space |
Distance: 40cm Visus